Abstract-Ultra-dense (UD) wireless networks and cloud radio access networks (CRAN) are two promising network architectures for the emerging fifth-generation (5G) wireless communication systems. By jointly employing them, a new appealing network solution is proposed in this paper, termed UD-CRAN. In a UD-CRAN, millimeter-wave (mmWave) wireless fronthaul is preferred for information exchange between the central processor and the distributed remote radio heads (RRHs), due to its lower cost and higher flexibility in deployment, compared to fixed optical links. This motivates our study in this paper on the downlink transmission in a mmWave fronthaul enabled, orthogonal frequency division multiple access (OFDMA) based UD-CRAN. In particular, the fronthaul is shared among the RRHs via time division multiple access (TDMA); while the RRHs jointly transmit to the users on orthogonal frequency subchannels using OFDMA. The joint resource allocation over the TDMA-based mmWave fronthaul and OFDMA-based wireless transmission is investigated to maximize the weighted sum rate of all users. Although the problem is non-convex, we propose a Lagrange duality based solution, which can be efficiently computed with good accuracy. To further reduce the complexity, we also propose a greedy search based heuristic, which achieves close to optimal performance under practical setups. Finally, we show the significant throughput gains of the proposed joint resource allocation approach compared to other benchmark schemes by simulations.Index Terms-Cloud radio access network, orthogonal frequency division multiple access, resource allocation, ultra-dense network, millimeter-wave fronthaul.
Cloud radio access network (CRAN), in which remote radio heads (RRHs) are deployed to serve users in a target area, and connected to a central processor (CP) via limitedcapacity links termed the fronthaul, is a promising candidate for the next-generation wireless communication systems. Due to the content-centric nature of future wireless communications, it is desirable to cache popular contents beforehand at the RRHs, to reduce the burden on the fronthaul and achieve energy saving through cooperative transmission. This motivates our study in this paper on the energy efficient transmission in an orthogonal frequency division multiple access (OFDMA)based CRAN with multiple RRHs and users, where the RRHs can prefetch popular contents. We consider a joint optimization of the user-SC assignment, RRH selection and transmit power allocation over all the SCs to minimize the total transmit power of the RRHs, subject to the RRHs' individual fronthaul capacity constraints and the users' minimum rate constraints, while taking into account the caching status at the RRHs. Although the problem is non-convex, we propose a Lagrange duality based solution, which can be efficiently computed with good accuracy. We compare the minimum transmit power required by the proposed algorithm with different caching strategies against the case without caching by simulations, which show the significant energy saving with caching.Index Terms-Caching, cloud radio access network (CRAN), orthogonal frequency division multiple access (OFDMA), resource allocation.
International audienceThis paper considers antenna selection (AS) at a receiver equipped with multiple antenna elements but only a single radio frequency chain for packet reception. As information about the channel state is acquired using training symbols (pilots), the receiver makes its AS decisions based on noisy channel estimates. Additional information that can be exploited for AS includes the time-correlation of the wireless channel and the results of the link-layer error checks upon receiving the data packets. In this scenario, the task of the receiver is to sequentially select (a) the pilot symbol allocation, i.e., how to distribute the available pilot symbols among the antenna elements, for channel estimation on each of the receive antennas; and (b) the antenna to be used for data packet reception. The goal is to maximize the expected throughput, based on the past history of allocation and selection decisions, and the corresponding noisy channel estimates and error check results. Since the channel state is only partially observed through the noisy pilots and the error checks, the joint problem of pilot allocation and AS is modeled as a partially observed Markov decision process (POMDP). The solution to the POMDP yields the policy that maximizes the long-term expected throughput. Using the Finite State Markov Chain (FSMC) model for the wireless channel, the performance of the POMDP solution is compared with that of other existing schemes, and it is illustrated through numerical evaluation that the POMDP solution significantly outperforms them
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.