The three-dimensional crystal structure of seryl-transfer RNA synthetase from Escherichia coli, refined at 2.5 A resolution, is described. It has an N-terminal domain that forms an antiparallel alpha helical coiled-coil, stretching 60 A out into the solvent and stabilized by interhelical hydrophobic interactions and an active-site alpha-beta domain based around a seven-stranded antiparallel beta sheet. Unlike the three other known synthetase structures, the enzyme contains no classical nucleotide-binding fold, and is the first representative of a second class of aminoacyl-tRNA synthetase structures.
The characteristic tetrahedral structure of water is known to be disrupted by changes in pressure and temperature. It has been suggested that ions in solution may have a similar perturbing effect. Here we use neutron diffraction to compare the effects of applied pressure and high salt concentrations on the hydrogen-bonded network of water. We find that the ions induce a change in structure equivalent to the application of high pressures, and that the size of the effect is ion-specific. Ionic concentrations of a few moles per litre have equivalent pressures that can exceed a thousand atmospheres. We propose that these changes may be understood in terms of the partial molar volume of the ions, relative to those of water molecules. The equivalent induced pressure of a particular ion species is correlated with its efficacy in precipitating, or salting-out, proteins from solution.
The crystal structure of the EF-Tu.EF-Ts complex from Escherichia coli has been determined to a resolution of 2.5 A. The complex contains two subunits of each of the elongation factors. The two EF-Ts molecules form a tight dimer, but there is little contact between the two EF-Tu molecules. The interaction of EF-Ts with EF-Tu results principally in the disruption of the Mg2+ ion binding site, thereby reducing the affinity of EF-Tu for guanine nucleotides.
Class 2 aminoacyl-tRNA synthetases, which include the enzymes for alanine, aspartic acid, asparagine, glycine, histidine, lysine, phenylalanine, proline, serine and threonine, are characterised by three distinct sequence motifs 1,2 and 3 (reference 1). The structural and evolutionary relatedness of these ten enzymes are examined using alignments of primary sequences from prokaryotic and eukaryotic sources and the known three dimensional structure of seryl-tRNA synthetase from E. coli. It is shown that motif 1 forms part of the dimer interface of seryl-tRNA synthetase and motifs 2 and 3 part of the putative active site. It is further shown that the seven alpha 2 dimeric synthetases can be subdivided into class 2a (proline, threonine, histidine and serine) and class 2b (aspartic acid, asparagine and lysine), each subclass sharing several important characteristic sequence motifs in addition to those characteristic of class 2 enzymes in general. The alpha 2 beta 2 tetrameric enzymes (for glycine and phenylalanine) show certain special features in common as well as some of the class 2b motifs. In the alanyl-tRNA synthetase only motif 3 and possibly motif 2 can be identified. The sequence alignments suggest that the catalytic domain of other class 2 synthetases should resemble the antiparallel domain found in seryl-tRNA synthetase. Predictions are made about the sequence location of certain important helices and beta-strands in this domain as well as suggestions concerning which residues are important in ATP and amino acid binding. Strong homologies are found in the N-terminal extensions of class 2b synthetases and in the C-terminal extensions of class 2a synthetases suggesting that these putative tRNA binding domains have been added at a later stage in evolution to the catalytic domain.
Crystal structures of seryl-tRNA synthetase from Thermus thermophilus complexed with two different analogs of seryl adenylate have been determined at 2.5 A resolution. The first complex is between the enzyme and seryl-hydroxamate-AMP (adenosine monophosphate), produced enzymatically in the crystal from adenosine triphosphate (ATP) and serine hydroxamate, and the second is with a synthetic analog of seryl adenylate (5'-O-[N-(L-seryl)-sulfamoyl]adenosine), which is a strong inhibitor of the enzyme. Both molecules are bound in a similar fashion by a network of hydrogen bond interactions in a deep hydrophilic cleft formed by the antiparallel beta sheet and surrounding loops of the synthetase catalytic domain. Four regions in the primary sequence are involved in the interactions, including the motif 2 and 3 regions of class 2 synthetases. Apart from the specific recognition of the serine side chain, the interactions are likely to be similar in all class 2 synthetases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.