The aim of this investigation was to study automotive disc brake cooling characteristics experimentally using a specially developed spin rig and numerically using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) have been analysed along with the design features of the brake assembly and their interfaces. The spin rig proved to be very valuable equipment; experiments enabled the determination of the thermal contact resistance between the disc and wheel carrier. The analyses demonstrated the sensitivity of this mode of heat transfer to clamping pressure. For convective cooling, heat transfer coefficients were measured and very similar results were obtained from spin rig experiments and CFD analyses. The nature of radiative heat dissipation implies substantial e ects at high temperatures. The results indicate substantial change of emissivity throughout the brake application. The influence of brake cooling parameters on the disc temperature has been investigated by FE modelling of a long drag brake application. The thermal power dissipated during the drag brake application has been analysed to reveal the contribution of each mode of heat transfer.
Film cooling is extensively used by modern gas turbine blade designers as a means of limiting the blade temperature when exposed to extreme combustor outlet temperatures. The following paper describes an experimental study of heat transfer near the entrance to a film cooling hole in a turbine blade cooling passage. Steady state heat transfer results were acquired by using a transient measurement technique in a 40 times actual rectangular channel, representative of an internal cooling channel of a turbine blade. Platinum thin film gauges were used to measure the inner surface heat transfer augmentation as a result of thermal boundary layer renewal and impingement near the entrance of a film cooling hole. Measurements were taken at various suction ratios, extraction angles, and wall temperature ratios with a main duct Reynolds number of 25,000. A numerical technique based on the resolution of the unsteady conduction equation, using a Crank–Nicholson scheme, is used to obtain the surface heat flux from the measured surface temperature history. Computational fluid dynamics predictions were also made to provide better understanding of the near-hole flow. The results show extensive heat transfer enhancement as a function of extraction angle and suction ratio in the near-hole region and demonstrate good agreement with a corresponding study. Furthermore it was shown that the effect of a wall-to-coolant ratio is of a second order and can therefore be considered negligible compared with the primary variables such as the suction ratio and extraction angle.o
The numerical modeling of heat transfer on the suction side of a cooled gas turbine blade is one of the more difficult problems in engineering. The main reason is believed to be the transition from laminar to turbulent flow and the inability of standard Navier–Stokes solvers to predict the transition. This paper proves that sudden changes in heat transfer on the suction side of a turbine blade can indeed also be caused by localized shocks disrupting the boundary layer. In contrast to transition, the position of these shocks and the effect of the shocks on the pressure distribution and heat transfer rate can be predicted to within an acceptable degree of accuracy using standard Navier–Stokes solvers. Two well-documented case studies from the literature are used to prove that the pressure distribution around the profile can be predicted accurately when compared to experimental data. At the same time this method can be used to capture sudden changes in heat transfer rate caused by localized shocks. The conclusion from this study is that localized shock waves close to the suction side surface of a turbine blade can have the same effect on the heat transfer rate to the blade as transition.
A technique for design optimization of a combustor is presented. This technique entails the use of computational fluid dynamics (CFD) and mathematical optimization to minimize the combustor exit temperature profile. The empirical and semi-empirical correlations commonly used for optimizing combustor exit temperature profile do not guarantee optimum. As an experimental approach is time consuming and costly, use is made of numerical techniques. However, using CFD without mathematical optimization on a trial and error basis does not guarantee optimal solutions. A better approach, which is often viewed as too expensive, is a combination of the two approaches, thus incorporating the influence of the variables automatically. In this study the combustor exit temperature profile is optimized. The optimum (uniform) combustor exit temperature profile mainly depends on the geometric parameters. Combustor parameters have been used as optimization variables. The combustor investigated is an experimental liquid-fuelled atmospheric combustor with a turbulent diffusion flame. The CFD simulations use the Fluent code with a standard k-ε model. The optimization is carried out using the Dynamic-Q algorithm, which is specifically designed to handle constrained problems where the objective and constraint functions are expensive to evaluate. The optimization leads to a more uniform combustor exit temperature profile compared with the original.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.