Typed lexicons that encode knowledge about the semantic types of an entity name, e.g., that 'Paris' denotes a geolocation, product, or person, have proven useful for many text processing tasks. While lexicons may be derived from large-scale knowledge bases (KBs), KBs are inherently imperfect, in particular they lack coverage with respect to long tail entity names. We infer the types of a given entity name using multi-source learning, considering information obtained by alignment to the Freebase knowledge base, Web-scale distributional patterns, and global semi-structured contexts retrieved by means of Web search. Evaluation in the challenging domain of social media shows that multi-source learning improves performance compared with rule-based KB lookups, boosting typing results for some semantic categories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.