This chapter deals with genomic prediction and genome-wide association studies in beef and dairy cattle. Topics discussed include conventional pedigree-based prediction, prediction using genomic information, validation of predictive ability, understanding predictive ability, blending genomic and pedigree information, genome-wide association studies, incorporation of sequence information and immediate and future challenges.
Subtype polymorphism is an important feature available in most modern type systems which makes code reuse and specialization possible. Recent works on separation of crosscutting concerns have created event interfaces (types) to decouple subjects from handlers. Extending the notion of subtyping to these event interfaces is a logical step. In this paper, we define event type polymorphism in the context of the Ptolemy language. Ptolemy allows declaring quantified, typed events which provide an interface between subjects and handlers. We add the notion of polymorphic event types to the Ptolemy language, defining a subtype relation among event types which in turn allows for both depth and width subtyping with regard to event context. Since Ptolemy only has explicit event announcement, our semantics is simpler and easier to reason about when compared to previously defined approaches. We also give the first formally defined static semantics for polymorphic events as well as demonstrate its usefulness via examples.
Separating crosscutting concerns while preserving modular reasoning is challenging. Type-based interfaces (event types) separate modularized crosscutting concerns (observers) and traditional object-oriented concerns (subjects). Event types paired with event specifications have been shown to be effective in enabling modular reasoning about subjects and observers. Similar to class subtyping there are benefits to organizing event types into subtyping hierarchies. However, unrelated behaviors of observers and their arbitrary execution orders could cause unique, somewhat counterintuitive, reasoning challenges in the presence of event subtyping. These challenges threaten both tractability of reasoning and reuse of event types. This work makes three contributions. First, we pose and explain these challenges. Second, we propose an event-based calculus to show how these challenges can be overcome. Finally, we present modular reasoning rules of our technique, and show its applicability to other event-based techniques including join point types. AbstractSeparating crosscutting concerns while preserving modular reasoning is challenging. Type-based interfaces (event types) separate modularized crosscutting concerns (observers) and traditional object-oriented concerns (subjects). Event types paired with event specifications were shown to be effective in enabling modular reasoning about subjects and observers. Similar to class subtyping, organizing event types into subtyping hierarchies is beneficial. However, unrelated behaviors of observers and their arbitrary execution orders could cause unique, somewhat counterintuitive, reasoning challenges in the presence of event subtyping. These challenges threaten both tractability of reasoning and reuse of event types. This work makes three contributions. First, we pose and explain these challenges. Second, we propose an event-based calculus to show how these challenges can be overcome. Finally, we present modular reasoning rules of our technique and show its applicability to other event-based techniques.
Separating crosscutting concerns while preserving modular reasoning is challenging. Type-based interfaces (event types) separate modularized crosscutting concerns (observers) and traditional object-oriented concerns (subjects). Event types paired with event specifications have been shown to be effective in enabling modular reasoning about subjects and observers. Similar to class subtyping there are benefits to organizing event types into subtyping hierarchies. However, unrelated behaviors of observers and their arbitrary execution orders could cause unique, somewhat counterintuitive, reasoning challenges in the presence of event subtyping. These challenges threaten both tractability of reasoning and reuse of event types. This work makes three contributions. First, we pose and explain these challenges. Second, we propose an event-based calculus to show how these challenges can be overcome. Finally, we present modular reasoning rules of our technique, and show its applicability to other event-based techniques including join point types. AbstractSeparating crosscutting concerns while preserving modular reasoning is challenging. Type-based interfaces (event types) separate modularized crosscutting concerns (observers) and traditional object-oriented concerns (subjects). Event types paired with event specifications were shown to be effective in enabling modular reasoning about subjects and observers. Similar to class subtyping, organizing event types into subtyping hierarchies is beneficial. However, unrelated behaviors of observers and their arbitrary execution orders could cause unique, somewhat counterintuitive, reasoning challenges in the presence of event subtyping. These challenges threaten both tractability of reasoning and reuse of event types. This work makes three contributions. First, we pose and explain these challenges. Second, we propose an event-based calculus to show how these challenges can be overcome. Finally, we present modular reasoning rules of our technique and show its applicability to other event-based techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.