The entry of calcium ions from the nixtamalization solution into maize kernels over time was followed in model experiments using radiolabeled calcium ions, with autoradiographic evaluation of the kernels after different cooking and steeping times. Calcium ions immediately entered the pericarp and were rapidly fixed at the outer boundary of the endosperm, especially at the external surface of the germ. Entry of calcium into the endosperm occurred gradually after long steeping times, except in the case of broken kernels, for which massive invasion by calcium was observed. After extended steeping times, a moderate amount of calcium‐45 was evident in the germ. Specific perforation of the outer layers of the grains provided a defined route of facilitated entry of calcium into the endosperm. No fundamental difference with respect to penetrability by calcium ion was seen in a comparison between flint‐type grains and grains containing only floury endosperm.
Three highly purified DNA polymerases, Escherichia coli polymerase I (enzyme A) and the polymerases induced by wild-type T4 phage and by T4 phage mutant L141 (antimutator phenotype), have been examined with respect to their tendency to incorporate the deoxyribonucleotide of 2-aminopurine [(AP)] for deoxyadenylate at specific sites in deoxyribonucleic acid (DNA). Using phi X174 phage DNA as a template and selected phi X174 restriction fragments as specific primers, we synthesized short sequences of phi X174 DNA in vitro by the polymerase of interest, with the 5'-triphosphate of 2-aminopurine deoxyriboside and dATP at equimolar concentration. The relative incorporation of (AP) at the various adenine sites was determined by providing the newly synthesized DNA fragment with a specific terminal radioactive label, subjecting the DNA fragment to thermal depurination as a DNA cleavage reaction highly selective for (AP), and analyzing the resulting radioactive fragments by denaturing gel electrophoresis, autoradiography, and microdensitometry. The L141 polymerase shows very pronounced site-dependent variations in (AP) incorporation. For the wild-type T4 polymerase, the pattern of (AP) incorporation follows the biases seen for the L141 enzyme, although in a less pronounced form. Sequence preferences for (AP) incorporation are least marked for E. coli polymerase I (enzyme A); in several instances, they run counter to the sequence biases observed with the T4 enzymes. For the enzyme showing the most pronounced sequence effects, L141 polymerase, the extent of (AP) incorporation was determined at 57 different sites. No simple principle governing the sequence dependence of (AP) incorporation could be deduced from these results.
Single-stranded model oligodeoxyribonucleotides, each containing a single protonatable base-cytosine, adenine, guanine, or 5-methylcytosine-centrally located in a background of non-protonatable thymine residues, were acid-titrated in aqueous solution, with UV monitoring. The basicity of the central base was shown to depend on the type of the central base and its nearest neighbours and to rise with increasing oligonucleotide length and decreasing ionic strength of the solution. More complex model oligonucleotides, each containing a centrally located 5-methylcytosine base, were comparatively evaluated in single-stranded and double-stranded form, by UV spectroscopy and high-field NMR. The N protonation of the 5-methylcytosine moiety in the double-stranded case occurred at much lower pH, at which the duplex was already experiencing general dissociation, than in the single-stranded case. The central guanine:5-methylcytosine base pair remained intact up to this point, possibly due to an unusual alternative protonation on O of the 5-methylcytosine moiety, already taking place at neutral or weakly basic pH, as indicated by UV spectroscopy, thus suggesting that 5-methylcytosine sites in double-stranded DNA might be protonated to a significant extent under physiological conditions.
Hydration kinetics for sound maize kernels in liquid water, determined by single‐kernel measurements for three different Mexican maize types, yielded water diffusion coefficients ordered as Celaya corn > Toluca corn > Palomero corn, at all temperatures examined. These diffusion coefficients are lower than those reported earlier for maize grains, possibly due to the fact that in the present study damaged kernels were rigorously excluded. The energies of activation determined from the Arrhenius plots were ordered as Palomero corn > Celaya corn = Toluca corn and were similar in value to those reported earlier for other maize types. Damage to the surface of the maize kernels during the hydration experiments occurs at a significant frequency. Even minor surface lacerations can strongly affect the rate of hydration of the kernels. Experiments with maize grains selectively varnished in various parts of their surface show that the entry of water into the kernels occurs predominantly through the pericarp, not through the tip cap, though the tip cap has a higher water inflow per unit area.
The syn-anti equilibrium about the glycosidic bond in adenosine and some related analogues was studied by means of 1H NMR spectroscopy, with the aid of several model analogues fixed in given conformations either by intramolecular bonding, or by introduction of a bulky substituent. A model unambiguously and exclusively in the syn conformation is 8-(α-hydroxyisopropyl) adenosine; while one fixed in the a n ti conformation is 8,5′-anhydro-8-oxoadenosine. A new analogue, fixed in the high an ti conformation, is 8,2′-O-isopropylidenearabinofuranosyladenine. Several additional new model compounds were synthesized and their properties are described.With the aid of these models, the syn-anti dynamic equilibrium was examined for adenosine and some related compounds in different solvent systems, and the conformer populations evaluated quantitatively. The validity of the procedure applied, and the accuracy of the results, are critically examined, and compared with findings obtained by other procedures. Available literature data on the syn-anti equilibrium in other 8-substituted adenosines are re analyzed in the light of the present results. An analysis is also presented of the interdependence of the various conformational parameters, i. e. conformation about the glycosidic bond and those of the sugar ring and exocyclic carbinol group, in adenosine and 2′,3′-O-isopropylideneadenosine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.