A one-pot method was used to synthesize CuIn x Ga 1−x S 2 nanoparticles by substituting In 3+ with Ga 3+ . The samples with composition of gallium ranging from 0% to 100% were synthesized by solving copper chloride, indium trichloride, gallium acetylacetonate, and thiourea as precursors in 1-octadecene, oleylamine, and oleic acid as noncoordinating, coordinating, and capping agent solvents, respectively. Depending on the chemical composition and synthesis conditions, the morphology of the as-synthesized nanoparticles obtained was trigonal, semitrigonal, hexagonal, and quasispherical. X-ray photoelectron spectroscopy and X-ray diffraction confirmed that Ga 3+ substituted In 3+ without any segregation over a wide range. The as-synthesized CuIn x Ga 1−x S 2 nanoparticles showed narrow size distribution across the entire composition range (x = 0−1) and band gap tuned in the range from 1.44 to 2.28 eV. The morphology, structure, and optical properties of the synthesized nanoparticles were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), UV− visible (UV−vis) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The mechanism of complex formation up to nanoparticle synthesis was also discussed.
CdS nanoparticles have been synthesized by a chemical reaction route using ethylenediamine as a complexing agent. The nanoparticles were characterized using techniques such as X-ray powder diffraction (XRD), scanning electron microscope (SEM), UV-VIS absorption spectroscopy, and photoluminescence spectroscopy. The absorption edge for the bulk hexagonal CdS is at 512 nm (2.42 eV). Comparing with the bulk CdS, it is believed that the blue shift in the absorption peak was caused by the quantum confinement effect. Photoluminescence measurements indicate CdS nanoparticles show fluorescence band with a maximum close to 315 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.