This paper presents a day-ahead scheduling approach for a multi-carrier residential energy system (MRES) including distributed energy resources (DERs). The main objective of the proposed scheduling approach is the minimization of the total costs of an MRES consisting of both electricity and gas energy carriers. The proposed model considers both electrical and natural gas distribution networks, DER technologies including renewable energy resources, energy storage systems (ESSs), and combined heat and power. The uncertainties pertinent to the demand and generated power of renewable resources are modeled using the chance-constrained approach. The proposed model is applied on the IEEE 33-bus distribution system and 14-node gas network, and the results demonstrate the efficacy of the proposed approach in the matters of diminishing the total operation costs and enhancing the reliability of the system.
Microgrids have emerged as a practical solution to improve the power system resilience against unpredicted failures and power outages. Microgrids offer substantial benefits for customers through the local supply of domestic demands as well as reducing curtailment during possible disruptions. Furthermore, the interdependency of natural gas and power networks is a key factor in energy systems’ resilience during critical hours. This paper suggests a probabilistic optimization of networked multi-carrier microgrids (NMCMG), addressing the uncertainties associated with thermal and electrical demands, renewable power generation, and the electricity market. The approach aims to minimize the NMCMG costs associated with the operation, maintenance, CO2e emission, startup and shutdown cost of units, incentive and penalty payments, as well as load curtailment during unpredicted failures. Moreover, two types of demand response programs (DRPs), including time-based and incentive-based DRPs, are addressed. The DRPs unlock the flexibility potentials of domestic demands to compensate for the power shortage during critical hours. The heat-power dual dependency characteristic of combined heat and power systems as a substantial technology in microgrids is considered in the model. The simulation results confirm that the suggested NMCMG not only integrates the flexibility potentials into the microgrids but also enhances the resilience of the energy systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.