Background and aimThe potential of microRNAs (miRNA) as non-invasive diagnostic, prognostic, and predictive biomarkers, as well as therapeutic targets, has recently been recognized. Previous studies have highlighted the importance of consistency in the methodology used, but to our knowledge, no study has described the methodology of sample preparation and storage systematically with respect to miRNAs as blood biomarkers. The aim of this study was to investigate the stability of miRNAs in blood under various relevant clinical and research conditions: different collection tubes, storage at different temperatures, physical disturbance, as well as serial freeze-thaw cycles.MethodsBlood samples were collected from 12 healthy donors into different collection tubes containing anticoagulants, including EDTA, citrate and lithium-heparin, as well as into serum collection tubes. MiRNA stability was evaluated by measuring expression changes of miR-1, miR-21 and miR-29b at different conditions: varying processing time of whole blood (up to 72 hours (h)), long-term storage (9 months at -80°C), physical disturbance (1 and 8 h), as well as in a series of freeze/thaw cycles (1 and 4 times).ResultsDifferent collection tubes revealed comparable concentrations of miR-1, miR-21 and miR-29b. Tubes with lithium-heparin were found unsuitable for miRNA quantification. MiRNA levels were stable for at least 24 h at room temperature in whole blood, while separated fractions did show alterations within 24 h. There were significant changes in the miR-21 and miR-29b levels after 72 h incubation of whole blood at room temperature (p<0.01 for both). Both miR-1 and miR-21 showed decreased levels after physical disturbance for 8 h in separated plasma and miR-1 in serum whole blood, while after 1 h of disturbance no changes were observed. Storage of samples at -80°C extended the miRNA stability remarkably, however, miRNA levels in long-term stored (9 months) whole blood samples were significantly changed, which is in contrast to the plasma samples, where miR-21 or miR-29b levels were found to be stable. Repetitive (n = 4) freeze-thaw cycles resulted in a significant reduction of miRNA concentration both in plasma and serum samples.ConclusionThis study highlights the importance of proper and systematic sample collection and preparation when measuring circulating miRNAs, e.g., in context of clinical trials. We demonstrated that the type of collection tubes, preparation, handling and storage of samples should be standardized to avoid confounding variables influencing the results.
Aims The present study had two aims: (i) compare echocardiographic parameters in COVID-19 patients with matched controls and (2) assess the prognostic value of measures of left (LV) and right ventricular (RV) function in relation to COVID-19 related death. Methods and results In this prospective multicentre cohort study, 214 consecutive hospitalized COVID-19 patients underwent an echocardiographic examination (by predetermined research protocol). All participants were successfully matched 1:1 with controls from the general population on age, sex, and hypertension. Mean age of the study sample was 69 years, and 55% were male participants. LV and RV systolic function was significantly reduced in COVID-19 cases as assessed by global longitudinal strain (GLS) (16.4% ± 4.3 vs. 18.5% ± 3.0, P < 0.001), tricuspid annular plane systolic excursion (TAPSE) (2.0 ± 0.4 vs. 2.6 ± 0.5, P < 0.001), and RV strain (19.8 ± 5.9 vs. 24.2 ± 6.5, P = 0.004). All parameters remained significantly reduced after adjusting for important cardiac risk factors. During follow-up (median: 40 days), 25 COVID-19 cases died. In multivariable Cox regression reduced TAPSE [hazard ratio (HR) = 1.18, 95% confidence interval (CI) [1.07-1.31], P = 0.002, per 1 mm decrease], RV strain (HR = 1.64, 95%CI[1.02;2.66], P = 0.043, per 1% decrease) and GLS (HR = 1.20, 95%CI[1.07-1.35], P = 0.002, per 1% decrease) were significantly associated with COVID-19-related death. TAPSE and GLS remained significantly associated with the outcome after restricting the analysis to patients without prevalent heart disease. Conclusions RV and LV function are significantly impaired in hospitalized COVID-19 patients compared with matched controls. Furthermore, reduced TAPSE and GLS are independently associated with COVID-19-related death.
Background-Knowledge of the burden and causes of sudden cardiac death (SCD) is sparse in persons aged <50 years; better understanding is needed to lower the risk of SCD. The aim of this study was to report SCD incidence rates and autopsy findings in persons aged 1 to 49 years. Methods and Results-All deaths in persons aged 1 to 49 years were included in 2007 to 2009. Death certificates were reviewed by 2 physicians. History of previous admissions to hospital was assessed, and discharge summaries were read. Sudden unexpected death cases were identified and autopsy reports were collected. In the 3-year study period, there were 7849 deaths of which we identified 893 (11%) SCD cases. The annual incidence rate per 100 000 persons increased from 2.3 (95% confidence interval, 2.0-2.7) to 21.7 (95% confidence interval, 20.2-23.4) in persons aged 1 to 35 and 36 to 49 years, respectively. Coronary artery disease was the most common cause of death and was found in 158 (36%) autopsied cases, followed by 135 (31%) cases of sudden unexplained death. Conclusions-In a nationwide cohort of persons aged <50 years, the annual incidence rate of SCD was ≈10× higher in persons aged 36 to 49 years than in persons aged 1 to 35 years. Notably, coronary artery disease was the most common cause of SCD, followed by unexplained deaths. These findings may help in developing strategies to prevent SCD in the future. (Circ Arrhythm Electrophysiol. 2014;7:205-211.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.