Perturbation in iron homeostasis is a hallmark of some hematologic diseases. Abnormal sideroblasts with accumulation of iron in the mitochondria are named ring sideroblasts (RS). RS is a cardinal feature of refractory anemia with RS (RARS) and RARS with marked thrombocytosis (RARS/-T). Mutations in SF3B1, a member of the RNA splicing machinery are frequent in RARS/-T and defects of this gene were linked to RS formation. Here we showcase the differences in iron architecture of SF3B1-mutant and wild-type (WT) RARS/-T and provide new mechanistic insights by which SF3B1 mutations lead to differences in iron. We found higher iron levels in SF3B1 mutant vs WT RARS/-T by transmission electron microscopy/spectroscopy/flow cytometry. SF3B1 mutations led to increased iron without changing the valence as shown by the presence of Fe(2+) in mutant and WT. Reactive oxygen species and DNA damage were not increased in SF3B1-mutant patients. RNA-sequencing and Reverse transcriptase PCR showed higher expression of a specific isoform of SLC25A37 in SF3B1-mutant patients, a crucial importer of Fe(2+) into the mitochondria. Our studies suggest that SF3B1 mutations contribute to cellular iron overload in RARS/-T by deregulating SLC25A37.
Case-hardening'' of the Ni-base superalloy IN718 has been achieved by low-temperature gas-phase carburization. After carburization under optimum conditions, the hardened surface layer (the ''case'') has about twice the hardness of the core (HV of %800) and contains %12 at pct carbon in interstitial solid solution. This causes a lattice parameter expansion of %1 pct perpendicular to the surface and, because of the mechanical constraint provided by the noncarburized core below, develops a large biaxial surface compressive residual stress (%1.9 GPa) parallel to the surface. Microstructural studies and X-ray diffractometry reveal no carbide precipitates in the case. In agreement with this observation, low-temperature carburization does not compromise the ductility and actually improves the crevice corrosion resistance of the alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.