Introduction: Tigecycline is a unique class of semi-synthetic glycylcyclines developed to treat infections caused by multidrug-resistant Klebsiella pneumoniae. In the past decades, eight tigecycline-resistant Acinetobacter baumannii isolates have been identified in Tehran and no Klebsiella pneumoniae has been reported.
Methodology: To elucidate the mechanism of K. pneumoniae efflux pump-mediated resistance, the expression of efflux pump genes (oqxA, oqxB, acrA, acrB, tolC) and regulators (acrR, ramA, marA, soxS, rarA, rob) was investigated by real-time RT-PCR. Multilocus sequence typing (MLST) of tigecycline-resistant strains was also performed.
Results: Compared to the tigecycline sensitive strain K32 (negative control), all resistant strains showed higher expression levels of efflux genes and regulatory factors. Three tigecycline-resistant strains (K53, K67, K79) showed higher levels of rarA expression (38.1-fold, 41-fold and 24-fold, respectively) and oqxB pump gene (48.2-fold, 60-fold and 58-fold, respectively). The increased expression of acrB was associated with the expression of ramA. However, to the best of our knowledge, studies on the mechanisms of resistance of K. pneumoniae strains to tigecycline are limited, especially in developing countries such as Iran.
Conclusions: In the present study, we found that both AcrAB-TolC and OqxAB efflux pumps may play an important role in tigecycline resistance in K. pneumoniae isolates. Finally, the emergence of ST11 molecular type of resistant isolates should be monitored in hospitals to identify factors leading to tigecycline resistance.
Background & Objective: Urinary tract infections (UTIs) are among the most common infections in children worldwide and Escherichia coli is the main pathogen that can cause UTI. The current study aims to investigate the antibacterial susceptibility pattern, biofilm production, and determine the frequency of afa and sfa genes in E. coli strains isolated from pediatrics with UTI from 2018 to 2019 in Hamadan, Iran.
Materials & Methods:In this cross-sectional study, 112 E. coli strains were collected from children with UTI. Disc diffusion method was performed to determine antimicrobial susceptibility. The PCR was used to detect the existence of afa and sfa genes. A microtiter plate assay was performed to test the biofilm production ability.Results: 81 (72.32%) of the 112 E. coli strains isolated from UTI samples were positive for biofilm development (22.2% strong, 33.3% moderate, and 44.4% weak). The afa and sfa genes were detected in 29.4% and 49.1% of the isolates, respectively. Most isolates were resistant to cephalothin (76.79%) and sensitive to imipenem and meropenem (100%).
Conclusion:The afa and sfa genes have a significant correlation with strong biofilm formation in uropathogenic E. coli (UPEC).
The immune system is responsible for protecting the host from pathogens, and it has evolved to deal with these pathogens. On the other hand, the co-evolution of pathogenic bacteria with hosts has led to the rise of an array of virulence genes that enable pathogen bacteria to evade or modulate the immune system. Staphylococcus aureus is a significant pathogen of humans that encodes several virulence factors that can modulate or evade from the innate and adaptive arm of the immune system. Overall, the immune reaction toward S. aureus contributes to stimulate innate and adaptive reactions. A profound understanding of the immune response to S. aureus infections will be critical for the development of vaccines and novel therapies. In this review, we summarized and discussed the novel information about the human immune system against S. aureus.
Objective
Klebsiella pneumoniae is one of most opportunistic pathogens that can be related to nosocomial infections. Increased acquisitions of multidrug resistance in this bacterium as well as the transfer of genes to other strains have caused concern. Integrons play key role in the acquisition and the spread of resistance genes. The aim of this study was evaluated the frequency of resistance genes sulI, sulII, tetA, tetB, class I (intI gene), class II integrons (intII gene) and the association between multidrug resistance and the presence of integrons in K. pneumoniae.
Results
Antibiotics susceptibility test was performed on 126 of K. pneumoniae isolates. Also, DNA extraction was done and genes were detected using PCR method. In this study, 67 isolates (53%), carrying both the sulI and sulII genes. Forty-five percent tetracycline-resistant isolates were tetA or tetB positive. The prevalence of intI gene was 96%, while only sixteen isolate harboring intII gene (12.5%). Our results showed the high prevalence of integrons in MDR K. pneumoniae, indicating the important role of these genes in the transmission of antibiotic resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.