Over the last decade, a wide array of evidence has been accumulated that disruption of circadian clock is prone to cause age-related diseases and premature aging. On the other hand, aging has been identified as one of the risk factors linked to the alteration of circadian clock. These evidences suggest that the processes of aging and circadian clock feedback on each other at the animal level. However, at the cellular level, we recently revealed that the primary fibroblast cells derived from Bmal1 -/- mouse embryo, in which circadian clock is completely disrupted, do not demonstrate the acceleration of cellular aging, i.e., cellular senescence. In addition, little is known about the impact of cellular senescence on circadian clock. In this study, we show for the first time that senescent cells possess a longer circadian period with delayed peak-time and that the variability in peak-time is wider in the senescent cells compared to their proliferative counterparts, indicating that senescent cells show alterations of circadian clock. We, furthermore, propose that investigation at cellular level is a powerful and useful approach to dissect molecular mechanisms of aging in the circadian clock.
Ageing is one of the greatest risk factors for chronic non-communicable diseases, and cellular senescence is one of the major causes of ageing and age-related diseases. The persistent presence of senescent cells in late life seems to cause disarray in a tissue-specific manner. Ageing disrupts the circadian clock system, which results in the development of many age-related diseases such as metabolic syndrome, cancer, cardiac diseases and sleep disorders and an increased susceptibility to infections. In this review, we first discuss cellular senescence and some of its basic characteristics and detrimental roles. Then, we discuss a relatively unexplored topic on the link between cellular senescence and the circadian clock and attempt to determine whether cellular senescence could be the underlying factor for circadian clock disruption.
As 5G technology is advancing towards its final phase of development and the deployment of 5G networks is underway, academic, development and industrial communities are already moving towards the research and development of 6G wireless networks. While 5G technologies had been hauled as an enabler for Internet of Everything, many limitations of such cellular systems are coming to light as they are being deployed. These drawbacks of 5G networks have motivated worldwide interest on developing the next generation wireless system, 6G, with the capability to fully incorporate wide-ranging applications from virtual reality to autonomous systems. In this paper, an overview of the first five generations of wireless systems has been shown, followed by a survey on 6G wireless network along with a discussion on the possible requirements and challenges of 6G.
Senescent cells, which show the permanent growth arrest in response to various forms of stress, accumulate in the body with the progression of age, and are associated with aging and age-associated diseases. Although the senescent cells are growth arrested, they still demonstrate high metabolic rate and altered gene expressions, indicating that senescent cells are still active. We recently showed that the circadian clock properties, namely phase and period of the cells, are altered with the establishment of replicative senescence. However, whether cellular senescence triggers the alteration of circadian clock properties in the cells is still unknown. In this study we show that the oxidative stress-induced premature senescence induces the alterations of the circadian clock, similar to the phenotypes of the replicative senescent cells. We found that the oxidative stress-induced premature senescent cells display the prolonged period and delayed phases. In addition, the magnitude of these changes intensified over time, indicating that cellular senescence changes the circadian clock properties. Our current results corroborate with our previous findings and further confirm that cellular senescence induces altered circadian clock properties, irrespective of the replicative senescence or the stress-induced premature senescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.