An increase in spectrin oxidation in a variety of erythrocytes displaying a tendency to vesiculate has been previously described. To explore this relationship in more detail, we have studied blood stored in citrate-phosphate-dextrose-adenine under blood bank conditions because, in this system, vesiculation occurs slowly. Vesiculation was quantitated by measuring acetylcholinesterase release, and the extent of spectrin oxidation was detected by using thiol-disulfide exchange chromatography. A strong correlation (r = .92) was found between the extent of spectrin oxidation and vesiculation when blood from five donors was analyzed at weekly intervals during storage. This strongly suggests that spectrin oxidation plays a role in the formation of spectrin-free vesicles, thereby limiting the shelf life of stored blood.
The intraerythrocytic development of the malaria parasite is accompanied by distinct morphological and biochemical changes in the host cell membrane, yet little is known about development-related alterations in the transbilayer organization of membrane phospholipids in parasitized cells. This question was examined in human red cells infected with Plasmodium falciparum. Normal red cells were infected with strain FCR3 or with clonal derivatives that either produce (K+) or do not produce (K-) knobby protuberances on the infected red cells. Parasitized cells were harvested at various stages of parasite development, and the bilayer orientation of red cell membrane phospholipids was determined chemically using 2,4,6-trinitrobenzene sulphonic acid (TNBS) or enzymatically using bee venom phospholipase A2 (PLA2) and sphingomyelinase C (SMC). We found that parasite development was accompanied by distinct alterations in the red cell membrane transbilayer distribution of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). Increases in the exoplasmic membrane leaflet exposure of PE and PS were larger in the late-stage parasitized cells than in the early-stage parasitized cells. Similar results were obtained for PE membrane distribution using either chemical (TNBS) or enzymatic (PLA2 plus SMC) methods, although changes in PS distribution were observed only with TNBS. Uninfected cohort cells derived from mixed populations of infected and uninfected cells exhibited normal patterns of membrane phospholipid organization. The observed alterations in P falciparum-infected red cell membrane phospholipid distribution, which is independent of the presence or absence of knobby protuberances, might be associated with the drastic changes in cell membrane permeability and susceptibility to early hemolysis observed in the late stages of parasite development.
The aminophospholipids phosphatidylethanolamine (PE) and phosphatidylserine (PS) are the major phospholipids contained in the cytoplasmic leaflet of the human erythrocyte (RBC) plasma membrane and are largely confined to that leaflet over the entire RBC lifespan. In particular, PS, which comprises -13% of total RBC membrane phospholipids, is normally restricted entirely to the cytoplasmic leaflet. However, molecular mechanisms that regulate this asymmetric distribution of phospholipids are largely unknown. We examined el-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.