A huge amount of potentially dangerous COVID-19 misinformation is appearing online. Here we use machine learning to quantify COVID-19 content among online opponents of establishment health guidance, in particular vaccinations (''anti-vax''). We find that the anti-vax community is developing a less focused debate around COVID-19 than its counterpart, the pro-vaccination (''pro-vax'') community. However, the anti-vax community exhibits a broader range of ''flavors'' of COVID-19 topics, and hence can appeal to a broader cross-section of individuals seeking COVID-19 guidance online, e.g. individuals wary of a mandatory fast-tracked COVID-19 vaccine or those seeking alternative remedies. Hence the anti-vax community looks better positioned to attract fresh support going forward than the pro-vax community. This is concerning since a widespread lack of adoption of a COVID-19 vaccine will mean the world falls short of providing herd immunity, leaving countries open to future COVID-19 resurgences. We provide a mechanistic model that interprets these results and could help in assessing the likely efficacy of intervention strategies. Our approach is scalable and hence tackles the urgent problem facing social media platforms of having to analyze huge volumes of online health misinformation and disinformation. INDEX TERMS COVID-19, machine learning, topic modeling, mechanistic model, social computing.
Objectives. To understand changes in how Facebook pages frame vaccine opposition. Methods. We categorized 204 Facebook pages expressing vaccine opposition, extracting public posts through November 20, 2019. We analyzed posts from October 2009 through October 2019 to examine if pages’ content was coalescing. Results. Activity in pages promoting vaccine choice as a civil liberty increased in January 2015, April 2016, and January 2019 (t[76] = 11.33 [P < .001]; t[46] = 7.88 [P < .001]; and t[41] = 17.27 [P < .001], respectively). The 2019 increase was strongest in pages mentioning US states (t[41] = 19.06; P < .001). Discussion about vaccine safety decreased (rs[119] = −0.61; P < .001) while discussion about civil liberties increased (rs[119] = 0.33; Py < .001]). Page categories increasingly resembled one another (civil liberties: rs[119] = −0.50 [P < .001]; alternative medicine: rs[84] = −0.77 [P < .001]; conspiracy theories: rs[119] = −0.46 [P < .001]; morality: rs[106] = −0.65 [P < .001]; safety and efficacy: rs[119] = −0.46 [P < .001]). Conclusions. The “Disneyland” measles outbreak drew vaccine opposition into the political mainstream, followed by promotional campaigns conducted in pages framing vaccine refusal as a civil right. Political mobilization in state-focused pages followed in 2019. Public Health Implications. Policymakers should expect increasing attempts to alter state legislation associated with vaccine exemptions, potentially accompanied by fiercer lobbying from specific celebrities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.