BackgroundFew details are available on the consumption of ectoparasites, specifically bat flies (Diptera: Nycteribiidae and Streblidae), by their chiropteran hosts while grooming. Such details are important to document consumption rates of ectoparasites by their bat host provide details on the dynamics of host-parasite interactions. We present data on ectoparasite consumption rates for an endemic Malagasy fruit bat (Pteropodidae: Rousettus madagascariensis) occupying a cave day roost colony in northern Madagascar. Using quantified behavioral analyses, grooming and associated ingestion rates were measured from infrared videos taken in close proximity to day-roosting bats. The recorded individual bats could be visually identified to age (adult, juvenile) and sex (male, female), allowing analyses of the proportion of time these different classes allocated to consuming ectoparasites via auto-grooming (self) or allo-grooming (intraspecific) per 10 min video recording session. These figures could then be extrapolated to estimates of individual daily consumption rates.ResultsBased on video recordings, adults spent significantly more time auto-grooming and allo-grooming than juveniles. The latter group was not observed consuming ectoparasites. Grooming rates and the average number of ectoparasites consumed per day did not differ between adult males and females. The mean extrapolated number consumed on a daily basis for individual adults was 37 ectoparasites. When these figures are overlaid on the estimated number of adult Rousettus occurring at the roost site during the dry season, the projected daily consumption rate was 57,905 ectoparasites.ConclusionsThe details presented here represent the first quantified data on bat consumption rates of their ectoparasites, specifically dipterans. These results provide new insights in host-parasite predation dynamics. More research is needed to explore the mechanism zoonotic diseases isolated from bat flies might be transmitted to their bat hosts, specifically those pathogens that can be communicated via an oral route.Electronic supplementary materialThe online version of this article (10.1186/s13071-018-2918-1) contains supplementary material, which is available to authorized users.
Astroviruses (AstVs) are RNA viruses infecting a large diversity of avian and mammalian species, including bats, livestock, and humans. We investigated AstV infection in a free-tailed bat species, Mormopterus francoismoutoui, endemic to Reunion Island. A total of 380 guano samples were collected in a maternity colony during 38 different sampling sessions, from 21 June 2016 to 4 September 2018. Each sample was tested for the presence of the AstV RNA-dependent RNA-polymerase (RdRp) gene using a pan-AstV semi-nested polymerase chain reaction assay. In total, 27 guano samples (7.1%) tested positive, with high genetic diversity of the partial RdRp gene sequences among positive samples. Phylogenetic analysis further revealed that the detected viruses were genetically related to AstVs reported in rats, reptiles, dogs, and pigs, but did not cluster with AstVs commonly found in bats. Although more investigations need to be conducted to assess the prevalence of infected bats in the studied population, our findings show that Reunion free-tailed bats are exposed to AstVs, and suggest that cross-species transmission may occur with other hosts sharing the same habitat.
Although island endemic bats are a source of considerable conservation concerns, their biology remains poorly known. Here, we studied the phenology and roosting behavior of a tropical island endemic species: the Reunion free‐tailed bat ( Mormopterus francoismoutoui ). This widespread and abundant species occupies various natural and anthropogenic environments such as caves and buildings. We set up fine‐scale monitoring of 19 roosts over 27 months in Reunion Island and analyzed roost size and composition, sexual and age‐associated segregation of individuals, as well as the reproductive phenology and body condition of individuals. Based on extensive data collected from 6721 individuals, we revealed a highly dynamic roosting behavior, with marked seasonal sex‐ratio variation, linked to distinct patterns of sexual aggregation among roosts. Despite the widespread presence of pregnant females all over the island, parturition was localized in a few roosts, and flying juveniles dispersed rapidly toward all studied roosts. Our data also suggested a 7‐month delay between mating and pregnancy, highlighting a likely long interruption of the reproductive cycle in this tropical bat. Altogether, our results suggest a complex social organization in the Reunion free‐tailed bat, with important sex‐specific seasonal and spatial movements, including the possibility of altitudinal migration. Bat tracking and genetic studies would provide additional insights into the behavioral strategies that shape the biology of this enigmatic bat species. The fine‐scale spatiotemporal data revealed by our study will serve to the delineation of effective conservation plans, especially in the context of growing urbanization and agriculture expansion in Reunion Island.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.