Niosomes are used in studies for drug delivery or gene transfer. However, their physical properties and features relative to liposomes are not well documented. To characterize and more rationally optimize niosome formulations, the properties of these vesicle systems are compared to those of liposomes composed of phosphatidylcholine and phosphatidylethanolamine lipids plus cholesterol. Niosomes are highly stable and only slightly more leaky than liposomes as assayed by calcein leakage; the permeability for ions (KCl) is higher than that of liposomes. Contrary to liposomes, the size of niosomes decreases substantially upon freezing in liquid nitrogen and subsequent thawing, as shown by cryo-EM and dynamic light scattering. The packing of niosomal membranes was determined by laurdan fluorescence and is slightly lower than that of liposomes. We did not succeed in the functional reconstitution of the L-arginine/L-ornithine antiporter ArcD2 in niosomes, which we attribute to the non-ionic nature of the surfactants. The antimicrobial peptides alamethicin and melittin act similarly on niosomes and liposomes composed of unsaturated components, whereas both niosomes and liposomes are unaffected when saturated amphiphiles are used. In conclusion, in terms of stability and permeability for drug-size molecules niosomes are comparable to liposomes and they may offer an excellent, inexpensive alternative for delivery purposes.
Disaccharides are well-known for their membrane protective ability. Interaction between sugars and multicomponent membranes, however, remains largely unexplored. Here, we combine molecular dynamics simulations and fluorescence microscopy to study the effect of mono- and disaccharides on membranes that phase separate into Lo and Ld domains. We find that nonreducing disaccharides, sucrose and trehalose, strongly destabilize the phase separation leading to uniformly mixed membranes as opposed to monosaccharides and reducing disaccharides. To unveil the driving force for this process, simulations were performed in which the sugar linkage was artificially modified. The availability of accessible interfacial binding sites that can accommodate the nonreducing disaccharides is key for their strong impact on lateral membrane organization. These exclusive interactions between the nonreducing sugars and the membranes may rationalize why organisms such as yeasts, tardigrades, nematodes, bacteria, and plants accumulate sucrose and trehalose, offering cell protection under anhydrobiotic conditions. The proposed mechanism might prove to be a more generic way by which surface bound agents could affect membranes.
The structure of a trifunctional linker is shown. The linker contains a fluorescent dye (green), two palmitoyl moieties (light blue) and is covalently coupled to a protein (schematically shown in dark blue). The tripartite is used to study the effect palmitoylation on the localization of membrane proteins or peptides in giant‐unilamellar vesicles (GUVs) composed of a phase‐separating lipid mixture. Here, the palmitoylated protein is shown to localize to the liquid‐disordered part of the membrane (thinner membrane) as shown by the co‐localization with a specific lipid probe (red). More information can be found in the full paper by G. Roelfes, B. Poolman et al. on page 1320 in Issue 9, 2020 (DOI: 10.1002/cbic.201900655).
Scheme1.Trifunctional linker used to conjugate 1) DPPE via amide coupling, 2) Sulfo-Cy3 azide via CuAAC, and 3) WALP via maleimidecoupling.Scheme2.Synthetic route toward scaffold 5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.