A comparative evaluation of energy requirement and CO2 emission was performed for native polyculture microalgae oil production in a wastewater treatment plant (WWTP). The wastewater provided nutrients for algae growth. Datasets of microalgae oil production and their details were collected from the Minamisoma pilot plant. Environmental impact estimation from direct energy and material balance was analyzed using SimaPro® v8.0.4. in two scenarios: existing and algal scenarios. In the existing scenario, CO2 emission sources were from wastewater treatment, sludge treatment, and import of crude oil. In the algal scenario, CO2 emission with microalgae production was considered using wastewater treatment, CO2 absorption from growing algae, and hydrothermal liquefaction (HTL) for extraction, along with the exclusion of exhausted CO2 emission for growing algae and use of discharged heat for HTL. In these two scenarios, 1 m3 of wastewater was treated, and 2.17 MJ higher heating value (HHV) output was obtained. Consequently, 2.76 kg-CO2 eq/m3-wastewater in the existing scenario and 1.59 kg-CO2 eq/m3-wastewater in the algal scenario were calculated. In the HTL process, 21.5 MJ/m3-wastewater of the discharged heat energy was required in the algal scenario. Hence, the efficiency of the biocrude production system will surpass those of the WWTP and imported crude oil.
A comparative evaluation of economic efficiency was performed for native polyculture microalgae oil production in an oxidation ditch (OD) process wastewater treatment plant (WWTP). A cost function was developed for the process. The operational cost per 1 m3 of wastewater (w.w.) was 1.34 $/m3-w.w. in the existing scenario, 1.29 $/m3-w.w. in algal scenario A (no cost for CO2 and waste heat) and 1.36 $/m3-w.w. in algal scenario B (no cost for CO2). The conditions were set as follows: hydraulic retention time (HRT): 4 days, microalgal productivity: 0.148 g/L and daily treatment volume: 81.6 m3-w.w./d. The cost differences were related to the increase in polymer flocculants for algae separation (+0.23 $/m3-w.w), carbon credits from CO2 absorption (−0.01 $/m3-w.w), the sales of biocrude (−0.04 $/m3-w.w) and sludge disposal (−0.18 $/m3-w.w). Hence, the introduction of the algae scenario was the same cost-effective as the existing scenario. Microalgae oil production in an OD process WWTP can serve as a new energy system and reduce the environmental load in a society with a declining population.
Coffee is an important agricultural commodity that is branded according to its environmental criteria in the global market. Therefore, Indonesia’s coffee production system needs to be investigated to meet the demand for eco-labeling, which has become a consumer preference. This study aims to assess the comprehensive sustainability evaluation of coffee production nurtured by an organic fertilizing system (OFS), chemical-organic fertilizing system (COFS), and chemical fertilizing system (CFS) that focuses on the energy–environment–economic nexus. A life cycle assessment (LCA), life cycle cost analysis (LCC), and energy analysis were performed as methods to evaluate the environmental impact, economic performance, and energy requirement analysis. The results indicated that the OFS had superior performance in two sustainability aspects: resulting in the lowest environmental damage and generating the highest economic benefit. Simultaneously, COFS shows the highest sustainability performance as it consumes the least energy. In contrast, CFS indicated the lowest sustainability performance in all aspects: highest environmental impact, lowest economic benefit, and highest energy consumption. Therefore, OFS is strongly recommended to be applied broadly, considering its environmental and economic superiority. Consequently, massive OFS application was followed by higher energy consumption. Alternatively, COFS can be considered for application due to its higher energy performance, even though it can potentially result in higher environmental damage and lower economic benefit. However, the government should explicitly provide some effort for the broad application of OFS in financial and assistance support since the shifting process needs more time to adapt.
Traditional Cambodian food has higher nutrient balances and is environmentally sustainable compared to conventional diets. However, there is a lack of knowledge and evidence on nutrient intake and the environmental greenness of traditional food at different age distributions. The relationship between nutritional intake and environmental impact can be evaluated using carbon dioxide (CO2) emissions from agricultural production based on life cycle assessment (LCA). The objective of this study was to estimate the CO2 equivalent (eq) emissions from the traditional Cambodian diet using LCA, starting at each agricultural production phase. A one-year food consumption scenario with the traditional diet was established. Five breakfast (BF1–5) and seven lunch and dinner (LD1–7) food sets were consumed at the same rate and compared using LCA. The results showed that BF1 and LD2 had the lowest and highest emissions (0.3 Mt CO2 eq/yr and 1.2 Mt CO2 eq/yr, respectively). The food calories, minerals, and vitamins met the recommended dietary allowance. The country’s existing food production system generates CO2 emissions of 9.7 Mt CO2 eq/yr, with the proposed system reducing these by 28.9% to 6.9 Mt CO2 eq/yr. The change in each food item could decrease emissions depending on the type and quantity of the food set, especially meat and milk consumption.
In this study, three paddy harvesting systems; manual harvesting of paddy (MHP), reaper harvesting of paddy (RHP), and combine harvesting of paddy (CHP) were evaluated considering field capacities, field efficiencies, time and fuel consumption, mechanization indices, greenhouse gas emissions, straw availability, and direct and indirect costs. Field experiments were conducted in North central province of Sri Lanka. The effective field capacity, field efficiency and fuel consumption of the combine harvester were 0.34 hah-1, 60.8%, and 34.1 Lha-1, respectively, and those of the paddy reaper were 0.185 hah-1, 58.2%, and 3.8 Lha-1, respectively. The total time consumed by MHP, RHP, and CHP were 76.05 hha-1, 39.76 hha-1, and 2.94 hha-1, respectively. The highest energy utilization was recorded by the CHP, at 1851.09 MJha-1, while MHP recorded the lowest at 643.20 MJha-1. The direct cost of the MHP was 1.50 and 1.52 times higher than those of the CHP and RHP, respectively. MHP recorded the lowest greenhouse gas emissions (32.94 kgCO2eqha-1), while CHP recorded the highest (176.29 kgCO2eqha-1). The RHP exhibited an intermediate level in all aspects. Although the CHP has higher field performance and direct costs, it brings higher GHG emissions and indirect costs. Therefore, an optimum level of mechanization should be introduced for the long-term sustainability of both the environment and farming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.