Saccharomyces cerevisiae ferments hexoses efficiently but is unable to ferment xylose. When the bacterial enzyme xylose isomerase (XI) from Thermus thermophilus was produced in S. cerevisiae, xylose utilization and ethanol formation were demonstrated. In addition, xylitol and acetate were formed. An unspecific aldose reductase (AR) capable of reducing xylose to xylitol has been identified in S. cerevisiae. The GRE3 gene, encoding the AR enzyme, was deleted in S. cerevisiae CEN.PK2-1C, yielding YUSM1009a. XI from T. thermophilus was produced, and endogenous xylulokinase from S. cerevisiae was overproduced in S. cerevisiae CEN.PK2-1C and YUSM1009a. In recombinant strains from which the GRE3 gene was deleted, xylitol formation decreased twofold. Deletion of the GRE3 gene combined with expression of the xylA gene from T. thermophilus on a replicative plasmid generated recombinant xylose utilizing S. cerevisiae strain TMB3102, which produced ethanol from xylose with a yield of 0.28 mmol of C from ethanol/mmol of C from xylose. None of the recombinant strains grew on xylose.
Resveratrol is a polyphenol suggested to play a protective role against ageing and agerelated diseases. We demonstrate that administering low-doses of resveratrol causes ROS accumulation and transcriptional changes in yeast cells and human adipocytes. These changes in gene expression depend on the oxidative transcription factor Yap1p. In particular, resveratrol induces expression of Yap1p gene targets, such as TRX2, TRR1 or AHP1, in a Yap1p-dependent mode. Under resveratrol treatment, Yap1p is phosphorylated and accumulated in the nucleus. Yap1p knockout causes resveratrol sensitivity, which totally depends on the presence of the C-terminal region of Yap1p. Thus, resveratrol may enhance cellular lifespan by hormetic ROS accumulation, which leads to strengthening the cells' antioxidant capacity.
SummaryQuiescence is an essential process in eukaryotes. Control of cell cycle progression by stress-activated protein kinases (SAPK) is critical for cell adaptation to extracellular stimuli. In yeast, activation of the HOG MAPK signalling pathway results in the control of cell cycle at several phases. In this manuscript, we describe the role of Hog1p modulating re-entry into cell cycle from a resting state. Cells deficient in Hog1p activation show a delay in entering the mitotic cell cycle from the stationary phase. Furthermore, a repressible Hog1p allele (Hog1AS) presents a comparable behaviour at this phase to the deleted strain. In addition, the role of Hog1p at the stationary phase exit is not related to loss of cell viability. Moreover, when cells enter the mitotic cell cycle after being in the stationary phase, Hog1p is rapidly activated and concentrates in the nucleus where it modifies the expression of several genes. Similar results are obtained in higher eukaryotic cells by activation of p38. Thus, these results reveal a novel role of the SAPK Hog1p in the control of cell cycle progression as cells leave a resting state.
The phospholipid metabolism of Saccharomyces cerevisiae plays a central role in its adaptation to low temperatures. In order to detect the key genes in this adaptation, various phospholipid mutants from the EUROSCARF collection of Saccharomyces cerevisiae BY4742 were tested to ascertain whether the suppression of some genes could improve the fermentation vitality of the cells at low temperature. The cell vitality and phospholipid composition of these mutants were analysed. Some knockouts improved (hmn1Δ) or impaired (cho2Δ and psd1Δ) their vitality at low temperature (13 C) but were not affected at optimum temperature (25 C). A common trait of the mutants that had some defect in vitality was a lower concentration of phosphatidylcholine and/or phosphatidylethanolamine. The supplementation with choline allowed them to recover viability, probably by synthesis through the Kennedy pathway. Hmn1Δ showed a lower concentration of phosphatidylcholine, which explains the dominant role of the de novo pathway in cellular phosphatidylethanolamine and phosphatidylcholine vs the Kennedy pathway. The absence of such genes as CRD1 or OPI3 produced important changes in phospholipid composition. Cardiolipin was not detected in crd1Δ but phosphatidylglycerol circumvents most of the functions assigned to CL. The considerable reduction in PC diminished the cell vitality of opi3Δ at both temperatures, although the decrease at 13 C was more marked.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.