Abstract. Co-digestion trials of beef cattle manure and waste kitchen oil (WKO) were conducted to evaluate potential increase of biogas production for a local beef farm anaerobic digester. The trials were conducted using laboratory-scale, semi-continuously loaded digesters under mesophilic conditions, with 21-day hydraulic retention time (HRT). In a preliminary test, WKO was added at 0%, 0.5%, 1.0%, 1.5%, and 2.0% by volume, each with replicate digesters (n=2), except for the 0% level, which had one digester (n=1). Methane (CH4) yield per week increased linearly with WKO levels. Populations of bacteriodetes decreased, while clostridiales and synergistales increased with the WKO levels. A second test was conducted using treatments with more replication: control (n=3), and 1.0% (n=3) and 2% (n=3) WKO levels. Methane yields of the 1.0% and 2.0% WKO levels were 79.1% and 203% higher than the control, respectively. Addition of WKO have resulted in changes of the metagenomics of the digesters. Populations of clostridiales increased, while bacteroidales and euryarchaeota methanomicrobia YC-E6 decreased with the WKO levels. The findings confirm adding low amounts (1% and 2%) of WKO as co-digestion feedstock can be an effective way to increase CH4 yield for beef operation anaerobic digestion, especially when there are available feedstock nearby. Keywords: Anaerobic digestion, Biogas, Methane, Semi-continuous digesters.
Inherently, ruminant production of methane (CH 4), a greenhouse gas (GHG), causes animal energy losses. Cottonseed is a lipid source and is used sometimes to enhance energy density in cattle diets. It also can mitigate enteric CH 4. Lipids release peroxides in the rumen, and antioxidants have the ability to neutralize them. Thus, a lipid and antioxidant source can benefit rumen fermentation. The aim of this study was to evaluate rumen fermentation parameters from cows fed cottonseed and vitamin E. Six cannulated cows were arranged in a replicate 3 × 3 latin square. Treatments were: 1) Control, 2) CS (30 % corn replaced by cottonseed) and 3) CSVitE (30 % corn replaced by cottonseed, plus 500 IU VitE). Results were compared by orthogonal contrast. When compared to the control diet, cottonseed inclusion reduced enteric CH 4 emissions by 42 %. Production of acetate, butyrate and the acetate to propionate ratio were respectively 34 %, 47 % and 36 % lower with the cottonseed treatments. Energy lost in the rumen as CH 4 and energy release as butyrate were reduced by 26 % and 32 % respectively. Propionate and intestinal energy release were, respectively, 43 % and 35 % higher with cottonseed treatments. Furthermore, as a nutritional strategy to mitigate enteric CH 4, cottonseed has positive effects on short chain fatty acid (SCFA) production and gastrointestinal energy release. Vitamin E did not result in improvements in ruminal fermentation. Further studies evaluating levels of vitamin E in association with different amounts and sources of lipids are required.
This study was carried out to evaluate the use of tannin extract from Acacia mearnsii as a strategy to reduce methane (CH4) in two distinct cattle genotypes and its effect on intake, digestibility, microbial efficiency and ruminal fermentation. Four Nellore (Bos indicus) and four Holstein (Bos taurus) dry cows fitted with rumen cannula were assigned to two 4 × 4 Latin square design, in a 2 × 4 factorial arrangement, where each genotype represented a square receiving four tannin levels (commercial extract of A. mearnsii) in the diet (0%, 0.5%, 1.0% and 1.5% of dry matter). Tannin levels used did not cause a reduction in feed intake or rumen passage rate for both genotypes (p > 0.05), although there was a linear reduction in the degradation rate and ruminal disappearance of diet (p < 0.05). The increase in tannin levels reduced the amount of entodiniomorph protozoa in the Nellore cattle (p < 0.05). There was no change in N retention or microbial efficiency (p > 0.05), despite the linear reduction of nutrient digestibility and the synthesis of microbial nitrogen (p < 0.05). The ruminal CH4 production was reduced (p < 0.05) without reducing the short‐chain fatty acid production. The threshold of 0.72% of tannin in the diet was estimated as the starting point for the reduction of ruminal CH4 production with long‐term efficacy. Therefore, the use of low levels of tannin extract from A. mearnsii is a potential option to manipulate rumen fermentation in Nellore and Holstein cattle and needs to be further investigated.
High lipid concentration in ruminant diets often harms nutrient digestibility and feed intake; thus, a protected lipid and antioxidant source can be considered as an alternative for improving diet energy without putting animal production at a disadvantage. The aim of this study was to evaluate the dry matter intake (DMI), nutrient digestibility and feeding behavior of cattle fed cottonseed and vitamin E. Six cannulated cows, non-pregnant, non-lactating were distributed in a replicated 3 × 3 Latin Square design. Feed was offered ad libitum twice daily. Treatments were: 1) Control, 2) CS: 30 % cottonseed included; and 3) CSVitE: 30 % cottonseed plus 500 IU VitE included. Data were analyzed by SAS (Statistical Analysis System, v.9.3) and the significance was declared at p < 0.05. Diets with cottonseed had 22 % greater digestibility of ether extract and 9 % lower digestibility of non-fiber-carbohydrates compared to the control. Treatments with cottonseed had 13 % higher time eating, 48 % more ruminating, 34 % more chewing and 17 % lower time idling compared to the control. Molar proportion of propionate was 36 % higher and the butyrate and acetate:propionate ratio were 27 % and 30 % lower, respectively, for the cottonseed treatments compared to the control. Including cottonseed up to 30 % can be used to increase diet energy density leading to improvements in feeding behavior and ruminal parameters. The inclusion of Vitamin E did not result in benefits to cattle when it was combined with cottonseed. Further studies should be undertaken to evaluate vitamin E levels in association with different amounts and lipid sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.