The acronym ESPRESSO stems for Echelle SPectrograph for RockyExoplanets and Stable Spectroscopic Observations; this instrument will be the next VLTh igh resolution spectrograph. The spectrograph will be installed at the CombinedCoudéL aboratory of the VLTa nd linked to the four 8.2 mU nit Telescopes (UT) through four optical Coudét rains. ESPRESSO will combine efficiencya nd extreme spectroscopic precision. ESPRESSO is foreseen to achieve ag ain of twomagnitudes with respect to its predecessor HARPS, and to improve the instrumental radial-velocity precision to reach the 10 cm s −1 level. It can be operated either with as ingle UT or with up to four UTs, enabling an additional gain in the latter mode. The incoherent combination of four telescopes and the extreme precision requirements called for many innovative design solutions while ensuring the technical heritage of the successful HARPS experience. ESPRESSO will allowtoexplore newfrontiers in most domains of astrophysics that require precision and sensitivity.The main scientific drivers are the search and characterization of rockyexoplanets in the habitable zone of quiet, nearby GtoM-dwarfs and the analysis of the variability of fundamental physical constants. The project passed the final design reviewinMay 2013 and entered the manufacturing phase. ESPRESSO will be installed at the Paranal Observatory in 2016 and its operation is planned to start by the end of the same year. 1I ntroductionHigh-resolution spectroscopy provides physical insights in the study of stars, galaxies, and interstellarand intergalactic medium.B esides the importance of observing fainter and fainter objects by increasing the photon collecting area by making bigger telescopes, the importance of high-precision has emerged in recent years as ac rucial element in spectroscopy. In manyi nvestigations repeatable observations overl ong temporal baseline are needed. Fori nstance, the Corresponding author: molaro@oats.inaf.it HARPS spectrograph at the ESO 3.6-m telescope is ap ioneering instrument for precise radial-velocity (RV) measurements (Mayor et al. 2003). The search for terrestrial planets in habitable zone is one of the most exciting science topics of the next decades and one of the main drivers for the newg eneration of Extremely Large Telescopes. The need for as imilar instrument on the VLTh as been emphasized in the ESO-ESA working group report on extrasolar planets. In October 2007 the ESO STC recommended the development of additional second-generation VLTi nstruments, and this proposal wasendorsed by the ESO Council in December of the same year.Among the recommended instru-
These gold nanoparticles can be synthesized with reproducibility, modified with seemingly limitless chemical functional groups, with adequate controlled optical properties for laser phototherapy of tumors and targeted drug delivery.
The acronym ESPRESSO stems for Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations; this instrument will be the next VLT high resolution spectrograph. The spectrograph will be installed at the Combined-Coudé Laboratory of the VLT and linked to the four 8.2 m Unit Telescopes (UT) through four optical Coudé trains. ESPRESSO will combine efficiency and extreme spectroscopic precision. ESPRESSO is foreseen to achieve a gain of two magnitudes with respect to its predecessor HARPS, and to improve the instrumental radial-velocity precision to reach the 10 cm s −1 level. It can be operated either with a single UT or with up to four UTs, enabling an additional gain in the latter mode. The incoherent combination of four telescopes and the extreme precision requirements called for many innovative design solutions while ensuring the technical heritage of the successful HARPS experience. ESPRESSO will allow to explore new frontiers in most domains of astrophysics that require precision and sensitivity. The main scientific drivers are the search and characterization of rocky exoplanets in the habitable zone of quiet, nearby G to M-dwarfs and the analysis of the variability of fundamental physical constants. The project passed the final design review in May 2013 and entered the manufacturing phase. ESPRESSO will be installed at the Paranal Observatory in 2016 and its operation is planned to start by the end of the same year.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.