Abstract. Transferring processes between different scales and types of mixers is a common operation in industry. Challenges within this operation include the existence of considerable differences in blending conditions between mixer scales and types. Obtaining the correct blending conditions is crucial for the ability to break up agglomerates in order to achieve the desired blend uniformity. Agglomerate break up is often an abrasion process. In this study, the abrasion rate potential of agglomerates is described by the Stokes abrasion (St Abr ) number of the system. The St Abr number equals the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. In this study, the St Abr approach demonstrates to be a useful tool to predict the abrasion of agglomerates during blending when technology is transferred between mixer scales/types. Applying the St Abr approach revealed a transition point between parameters that determined agglomerate abrasion. This study gave evidence that (1) below this transition point, agglomerate abrasion is determined by a combination of impeller effects and by the kinetic energy density of the powder blend, whereas (2) above this transition point, agglomerate abrasion is mainly determined by the kinetic energy density of the powder blend.
Abstract. Removal of microcrystalline cellulose agglomerates in a dry-mixing system (lactose, 100 M) predominantly occurs via abrasion. The agglomerate abrasion rate potential is estimated by the Stokes abrasion (St Abr ) number of the system. The St Abr number equals the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. Basically, the St Abr number concept describes the blending condition of the dry-mixing system. The concept has been applied to investigate the relevance of process parameters on agglomerate abrasion in tumbling blenders. Here, process parameters such as blender rotational speed and relative fill volumes were investigated. In this study, the St Abr approach revealed a transition point between abrasion rate behaviors. Below this transition point, a blending condition exists where agglomerate abrasion is dominated by the kinetic energy density of the powder blend. Above this transition point, a blending condition exists where agglomerates show (undesirable) slow abrasion rates. In this situation, the blending condition is mainly determined by the high fill volume of the filler.
An existing method to measure particle velocity is particle image velocimetry which requires presence of tracer materials. This method of contrast enhancement is not always applicable in an industrial setting. Therefore a method to assess the movement of small, structures has been introduced, called powder surface velocimetry (PSV). The principle of PSV is to follow the movement of small structures on the surface of the powder bed. The displacement of the structure is correlated with velocity. The rate of the blade of a blender was quantified to assess the validity of PSV. Next the powder surface velocity of lactose 100 M was measured by PSV and was found to be in line with expected values and flow regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.