Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a neurodegenerative disorder commonly diagnosed in infants and characterized by progressive cerebellar ataxia, spasticity, motor sensory neuropathy and axonal demyelination. ARSACS is caused by mutations in the SACS gene that lead to truncated or defective forms of the 520 kDa multidomain protein, sacsin. Sacsin function is exclusively studied on neuronal cells, where it regulates mitochondrial network organization and facilitates the normal polymerization of neuronal intermediate filaments (i.e., neurofilaments and vimentin). Here, we show that sacsin is also highly expressed in astrocytes, C6 rat glioma cells and N9 mouse microglia. Sacsin knockout in C6 cells (C6Sacs−/−) induced the accumulation of the glial intermediate filaments glial fibrillary acidic protein (GFAP), nestin and vimentin in the juxtanuclear area, and a concomitant depletion of mitochondria. C6Sacs−/− cells showed impaired responses to oxidative challenges (Rotenone) and inflammatory stimuli (Interleukin-6). GFAP aggregation is also associated with other neurodegenerative conditions diagnosed in infants, such as Alexander disease or Giant Axonal Neuropathy. Our results, and the similarities between these disorders, reinforce the possible connection between ARSACS and intermediate filament-associated diseases and point to a potential role of glia in ARSACS pathology.
have equally contributed.Abbreviations: ATP, adenosine triphosphate; BiFC, bimolecular fluorescence complementation; BRET, bioluminescence resonance energy transfer; DIC, differential interference contrast; DelCT, deletion of the C-terminus; EGFP, enhanced green fluorescent protein; FRET, fluorescence resonance energy transfer; LIF, leukemia inhibitory factor; PCR, polymerase chain reaction; PTMs, post-translational modifications; SDS, sodium dodecyl sulfate; STAT3, signal transducer and activator of transcription-3; V1, Venus 1 (amino acids 1-158); V2, Venus 2 (amino acids 159-238). AbstractSignal transducer and activator of transcription 3 (STAT3) is a ubiquitous and pleiotropic transcription factor that plays essential roles in normal development, immunity, response to tissue damage and cancer. We have developed a Venus-STAT3 bimolecular fluorescence complementation assay that allows the visualization and study of STAT3 dimerization and protein-protein interactions in living cells. Inactivating mutations on residues susceptible to post-translational modifications (PTMs) (K49R, K140R, K685R, Y705F and S727A) changed significantly the intracellular distribution of unstimulated STAT3 dimers when the dimers were formed by STAT3 molecules that carried different mutations (ie they were "asymmetric"). Some of these asymmetric dimers changed the proliferation rate of HeLa cells. Our results indicate that asymmetric PTMs on STAT3 dimers could constitute a new level of regulation of STAT3 signaling. We put forward these observations as a working hypothesis, since confirming the existence of asymmetric STAT3 homodimers in nature is extremely difficult, and our own experimental setup has technical limitations that we discuss.However, if our hypothesis is confirmed, its conceptual implications go far beyond STAT3, and could advance our understanding and control of signaling pathways. K E Y W O R D Sacetylation, bimolecular fluorescence complementation, dimerization, phosphorylation SUPPORTING INFORMATIONAdditional supporting information may be found online in the Supporting Information section.How to cite this article: Letra-Vilela R, Cardoso B, Silva-Almeida C, et al. Can asymmetric posttranslational modifications regulate the behavior of STAT3 homodimers?. FASEB BioAdvances. 2020;2: 116-125. https ://doi.
The glial fibrillary acidic protein (GFAP) is an intermediate filament widely used to identify and label astroglial cells, a very abundant and relevant glial cell type in the central nervous system. A major hurdle in studying its behavior and function arises from the fact that GFAP does not tolerate well the addition of protein tags to its termini. Here, we tagged human GFAP (hGFAP) with an enhanced green fluorescent protein (EGFP) for the first time, and substituted a previously reported EGFP tag on mouse GFAP (mGFAP) by a more versatile Halo Tag. Both versions of tagged GFAP were able to incorporate into the normal GFAP filamentous network in glioma cells, and Alexander disease-related mutations or pharmacological disruption of microtubules and actin filaments interfered with GFAP dynamics. These new tools could provide new fruitful venues for the study of GFAP oligomerization, aggregation and dynamics in living cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.