Regeneration of cartilage defects can be accelerated by localized delivery of appropriate growth factors (GFs) from scaffolds. In the present study we analysed the in vitro and in vivo release rates and delivery efficacies of transforming growth factor-β1 (TGFβ1) and bone morphogenetic protein-2 (BMP-2) from a bilayered system, applied for osteochondral defect repair in a rabbit model. A bone-orientated, porous PLGA cylinder was overlaid with GF containing PLGA microspheres, dispersed in an alginate matrix. Four microsphere formulations were incorporated: (a) blank ones; (b) microspheres containing 50 ng TGFβ1; (c) microspheres containing 2.5 µg BMP-2; and (d) microspheres containing 5 µg BMP-2. Release kinetics and tissue distributions were determined using iodinated ((125) I) GFs. Bioactivity of in vitro released BMP-2 and TGFβ1 was confirmed in cell-based assays. In vivo release profiles indicated good GF release control. 20% of BMP-2 and 15% of TGFβ1 were released during the first day. Virtually the total dose was delivered at the end of week 6. Significant histological differences were observed between untreated and GF-treated specimens, there being especially relevant short-term outcomes with 50 ng TGFβ1 and 5 µg BMP-2. Although the evaluation scores for the newly formed cartilage did not differ significantly, 5 µg BMP-2 gave rise to higher quality cartilage with improved surface regularity, tissue integration and increased collagen-type II and aggrecan immunoreactivity 2 weeks post-implantation. Hence, the bilayered system controlled GF release rates and led to preserved cartilage integrity from 12 weeks up to at least 24 weeks.
Bone regeneration and vascularization with porous PLGA scaffolds loaded with VEGF (0.35 and 1.75 μg) and BMP-2 (3.5 and 17.5 μg), incorporated in PLGA microspheres, or the combination of either dose of BMP-2 with the low dose of VEGF were investigated in an intramedullary femur defect in rabbits. The system was designed to control growth factor (GF) release and maintain the GFs localized within the defect. An incomplete release was observed in vitro whereas in vivo VEGF and BMP-2 were totally delivered during 3 and 4 weeks, respectively. A weak synergistic effect of the dual delivery of VEGF and BMP-2 (high dose) was found by 4 weeks. However, the absence of an apparent synergistic long-term effect (12 weeks) of the combination over BMP-2 alone suggests that more work has to be done to optimize VEGF dose, sequential presentation, and the ratio of the two GFs to obtain a beneficial bone repair response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.