To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find associated loci, we assembled a custom imputation reference panel from whole-genome-sequenced patients with ALS and matched controls (n = 1,861). Through imputation and mixed-model association analysis in 12,577 cases and 23,475 controls, combined with 2,579 cases and 2,767 controls in an independent replication cohort, we fine-mapped a new risk locus on chromosome 21 and identified C21orf2 as a gene associated with ALS risk. In addition, we identified MOBP and SCFD1 as new associated risk loci. We established evidence of ALS being a complex genetic trait with a polygenic architecture. Furthermore, we estimated the SNP-based heritability at 8.5%, with a distinct and important role for low-frequency variants (frequency 1–10%). This study motivates the interrogation of larger samples with full genome coverage to identify rare causal variants that underpin ALS risk.
This study provides Class IV evidence that autoantibodies to NF155 identify a CIDP subtype characterized by severe neuropathy, poor response to IVIg, and disabling tremor.
Amyotrophic lateral sclerosis is a neurodegenerative disorder characterized by progressive loss of upper and lower motor neurons, with a median survival of 2–3 years. Although various phenotypic and research diagnostic classification systems exist and several prognostic models have been generated, there is no staging system. Staging criteria for amyotrophic lateral sclerosis would help to provide a universal and objective measure of disease progression with benefits for patient care, resource allocation, research classifications and clinical trial design. We therefore sought to define easily identified clinical milestones that could be shown to occur at specific points in the disease course, reflect disease progression and impact prognosis and treatment. A tertiary referral centre clinical database was analysed, consisting of 1471 patients with amyotrophic lateral sclerosis seen between 1993 and 2007. Milestones were defined as symptom onset (functional involvement by weakness, wasting, spasticity, dysarthria or dysphagia of one central nervous system region defined as bulbar, upper limb, lower limb or diaphragmatic), diagnosis, functional involvement of a second region, functional involvement of a third region, needing gastrostomy and non-invasive ventilation. Milestone timings were standardized as proportions of time elapsed through the disease course using information from patients who had died by dividing time to a milestone by disease duration. Milestones occurred at predictable proportions of the disease course. Diagnosis occurred at 35% through the disease course, involvement of a second region at 38%, a third region at 61%, need for gastrostomy at 77% and need for non-invasive ventilation at 80%. We therefore propose a simple staging system for amyotrophic lateral sclerosis. Stage 1: symptom onset (involvement of first region); Stage 2A: diagnosis; Stage 2B: involvement of second region; Stage 3: involvement of third region; Stage 4A: need for gastrostomy; and Stage 4B: need for non-invasive ventilation. Validation of this staging system will require further studies in other populations, in population registers and in other clinic databases. The standardized times to milestones may well vary between different studies and populations, although the stages themselves and their meanings are likely to remain unchanged.
Fibro-adipogenic progenitors (FAPs) are typically activated in response to muscle injury, and establish functional interactions with inflammatory and muscle stem cells (MuSCs) to promote muscle repair. We found that denervation causes progressive accumulation of FAPs, without concomitant infiltration of macrophages and MuSC-mediated regeneration. Denervation-activated FAPs exhibited persistent STAT3 activation and secreted elevated levels of IL-6, which promoted muscle atrophy and fibrosis. FAPs with aberrant activation of STAT3-IL-6 signalling were also found in mouse models of spinal cord injury, spinal muscular atrophy, amyotrophic lateral sclerosis (ALS) and in muscles of ALS patients. Inactivation of STAT3-IL-6 signalling in FAPs effectively countered muscle atrophy and fibrosis in mouse models of acute denervation and ALS (SOD mice). Activation of pathogenic FAPs following loss of integrity of neuromuscular junctions further illustrates the functional versatility of FAPs in response to homeostatic perturbations and suggests their potential contribution to the pathogenesis of neuromuscular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.