Lead-free potassium sodium niobate (K0.5Na0.5NbO3, KNN) piezoelectric ceramics have been densified at temperatures lower than 300 °C using atmosphere-water assisted FLASH sintering.
FLASH sintering is a field-assisted technique that allows the densification of ceramics in a few seconds at temperatures significantly lower than those of conventional cycles. There is still discussion among the scientific community about the mechanism behind this sintering process, that has been typically attributed to Joule heating, defect creation and movement or liquid phase assisted sintering. Computational modelling can be a powerful tool in helping to explain and predict this process. Using potassium sodium niobate (KNN) as a case study, a lead-free piezoelectric, this work explores Finite Element Modelling to evaluate the dependence of Joule heating generation and temperature distribution as a function of the cubic particle orientation.
If piezoelectric micro-devices based on K0.5Na0.5NbO3 (KNN) thin films are to achieve commercialization, it is critical to optimize the films’ performance using low-cost scalable processing conditions. Here, sol–gel derived KNN thin films are deposited using 0.2 and 0.4 M precursor solutions with 5% solely potassium excess and 20% alkali (both potassium and sodium) excess on platinized sapphire substrates with reduced thermal expansion mismatch in relation to KNN. Being then rapid thermal annealed at 750 °C for 5 min, the films revealed an identical thickness of ~340 nm but different properties. An average grain size of ~100 nm and nearly stoichiometric KNN films are obtained when using 5% potassium excess solution, while 20% alkali excess solutions give the grain size of 500–600 nm and (Na + K)/Nb ratio of 1.07–1.08 in the prepared films. Moreover, the 5% potassium excess solution films have a perovskite structure without clear preferential orientation, whereas a (100) texture appears for 20% alkali excess solutions, being particularly strong for the 0.4 M solution concentration. As a result of the grain size and (100) texturing competition, the highest room-temperature dielectric permittivity and lowest dissipation factor measured in the parallel-plate-capacitor geometry were obtained for KNN films using 0.2 M precursor solutions with 20% alkali excess. These films were also shown to possess more quadratic-like and less coercive local piezoelectric loops, compared to those from 5% potassium excess solution. Furthermore, KNN films with large (100)-textured grains prepared from 0.4 M precursor solution with 20% alkali excess were found to possess superior local piezoresponse attributed to multiscale domain microstructures.
If piezoelectric thin films sensors based on K0.5Na0.5NbO3 (KNN) are to achieve commercialization, it is critical to optimize the film performance using low-cost scalable processing and substrates. Here, sol–gel derived KNN thin films are deposited using a solution with 5% of potassium excess on Pt/TiO2/SiO2/Si and Pt/SrTiO3 substrates, and rapid thermal annealed at 750 °C for 5 min. Despite an identical film morphology and thickness of ~335 nm, an in-plane stress/strain state is found to be tensile for KNN films on Pt/TiO2/SiO2/Si, and compressive for those on Pt/SrTiO3 substrates, being related to thermal expansion mismatch between the substrate and the film. Correspondingly, KNN films under in-plane compressive stress possess superior dielectric permittivity and polarization in the parallel-plate-capacitor geometry.
Potassium sodium niobate, K0.5Na0.5NbO3 (KNN) is a lead‐free piezoelectric with the potential to replace lead zirconate titanate (PZT) in electromechanical applications. Due to its cuboid particle morphology and volatile elements, monophasic and dense ceramics are difficult to obtain via conventional sintering. In this work, isothermal FLASH sintering produced uniformly densified KNN ceramics at 900 °C, 200 °C lower than conventional sintering. Specific surface area (SSA) analysis of pre‐FLASH ceramics revealed that a 30 min isothermal hold at 900 °C, before the application of electric field, increased the contact area between particles and was crucial to promote uniform densification. Finite element modelling (FEM) revealed why density is more uniform when using isothermal heating compared with a constant heating rate, commonly used in FLASH sintering. These results extend our understanding of FLASH sintering and illustrate its relevance for the development of lead‐free piezoelectrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.