Convolutional neural networks (CNNs) have become the dominant neural network architecture for solving many state-of-the-art (SOA) visual processing tasks. Even though graphical processing units are most often used in training and deploying CNNs, their power efficiency is less than 10 GOp/s/W for single-frame runtime inference. We propose a flexible and efficient CNN accelerator architecture called NullHop that implements SOA CNNs useful for low-power and low-latency application scenarios. NullHop exploits the sparsity of neuron activations in CNNs to accelerate the computation and reduce memory requirements. The flexible architecture allows high utilization of available computing resources across kernel sizes ranging from 1x1 to 7x7. NullHop can process up to 128 input and 128 output feature maps per layer in a single pass. We implemented the proposed architecture on a Xilinx Zynq field-programmable gate array (FPGA) platform and presented the results showing how our implementation reduces external memory transfers and compute time in five different CNNs ranging from small ones up to the widely known large VGG16 and VGG19 CNNs. Postsynthesis simulations using Mentor Modelsim in a 28-nm process with a clock frequency of 500 MHz show that the VGG19 network achieves over 450 GOp/s. By exploiting sparsity, NullHop achieves an efficiency of 368%, maintains over 98% utilization of the multiply-accumulate units, and achieves a power efficiency of over 3 TOp/s/W in a core area of 6.3 mm₂. As further proof of NullHop's usability, we interfaced its FPGA implementation with a neuromorphic event camera for real-time interactive demonstrations.
The study and monitoring of wildlife has always been a subject of great interest. Studying the behavior of wild animals is a difficult task due to the difficulties of tracking and classifying their actions. Nowadays, technology allows designing low-cost systems that make these tasks easier to carry out, and some of these systems produce good results; however, none of them obtains a high-accuracy classification because of the lack of information. Doñana National Park is a very rich environment with various endangered animal species. Thereby, this park requires a more accurate and efficient system of monitoring to act quickly against animal behaviors that may endanger certain species. In this letter, we propose a hierarchical, wireless sensor network installed in this park, to collect information about animals' behaviors using intelligent devices placed on them which contain a neural network implementation to classify their behavior based on sensory information. Once a behavior is detected, the network redirects this information to an external database for further treatment. This solution reduces power consumption and facilitates animals' behavior monitoring for biologists.
Deep Learning algorithms have become state-of-theart methods for multiple fields, including computer vision, speech recognition, natural language processing, and audio recognition, among others. In image vision, convolutional neural networks (CNN) stand out. This kind of network is expensive in terms of computational resources due to the large number of operations required to process a frame. In recent years, several frame-based chip solutions to deploy CNN for real time have been developed. Despite the good results in power and accuracy given by these solutions, the number of operations is still high, due the complexity of the current network models. However, it is possible to reduce the number of operations using different computer vision techniques other than frame-based, e.g., neuromorphic event-based techniques. There exist several neuromorphic vision sensors whose pixels detect changes in luminosity. Inspired in the leaky integrate-and-fire (LIF) neuron, we propose in this manuscript an event-based field-programmable gate array (FPGA) multiconvolution system. Its main novelty is the combination of a memory arbiter for efficient memory access to allow row-by-row kernel processing. This system is able to convolve 64 filters across multiple kernel sizes, from 1 × 1 to 7 × 7, with latencies of 1.3 µs and 9.01 µs, respectively, generating a continuous flow of output events. The proposed architecture will easily fit spike-based CNNs.
Neuromorphic vision sensors detect changes in luminosity taking inspiration from mammalian retina and providing a stream of events with high temporal resolution, also known as Dynamic Vision Sensors (DVS). This continuous stream of events can be used to extract spatio-temporal patterns from a scene. A time-surface represents a spatio-temporal context for a given spatial radius around an incoming event from a sensor at a specific time history. Time-surfaces can be organized in a hierarchical way to extract features from input events using the Hierarchy Of Time-Surfaces algorithm, hereinafter HOTS. HOTS can be organized in consecutive layers to extract combination of features in a similar way as some deep-learning algorithms do. This work introduces a novel FPGA architecture for accelerating HOTS network. This architecture is mainly based on block-RAM memory and the non-restoring square root algorithm, requiring basic components and enabling it for low-power low-latency embedded applications. The presented architecture has been tested on a Zynq 7100 platform at 100 MHz. The results show that the latencies are in the range of 1 μ s to 6.7 μ s, requiring a maximum dynamic power consumption of 77 mW. This system was tested with a gesture recognition dataset, obtaining an accuracy loss for 16-bit precision of only 1.2% with respect to the original software HOTS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.