The recent increasing demand of Silicon-on-Chip devices has had a significant impact on the industrial processes of leading semiconductor companies. The semiconductor industry is redesigning internal technology processes trying to optimize costs and production yield. To achieve this target a key role is played by the intelligent early wafer defects identification task. The Electrical Wafer Sorting (EWS) stage allows an efficient wafer defects analysis by processing the visual map associated to the wafer. The goal of this contribution is to provide an effective solution to perform automatic evaluation of the EWS defect maps. The proposed solution leverages recent approaches of deep learning both supervised and unsupervised to perform a robust EWS defect patterns classification in different device technologies including Silicon and Silicon Carbide. This method embeds an end-to-end pipeline for supervised EWS defect patterns classification including a hierarchical unsupervised system to assess novel defects in the production line. The implemented "Unsupervised Learning Block" embeds ad-hoc designed Dimensionality Reduction combined with Clustering and a Metrics-driven Classification sub-systems. The proposed "Supervised Learning Block" includes a Convolutional Neural Network trained to perform a supervised classification of the Wafer Defect Maps (WDMs). The proposed system has been tested and validated on different datasets, showing effective performance in the classification of the defect patterns (average accuracy about 97%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.