Diagnostic and classification algorithms play an important role in data analysis, with applications in areas such as health care, fault diagnostics, or benchmarking. Branching programs (BP) is a popular representation model for describing the underlying classification/diagnostics algorithms. Typical application scenarios involve a client who provides data and a service provider (server) whose diagnostic program is run on client's data. Both parties need to keep their inputs private. We present new, more efficient privacy-protecting protocols for remote evaluation of such classification/diagnostic programs. In addition to efficiency improvements, we generalize previous solutions - we securely evaluate private linear branching programs (LBP), a useful generalization of BP that we introduce. We show practicality of our solutions: we apply our protocols to the privacy-preserving classification of medical ElectroCardioGram (ECG) signals and present implementation results. Finally, we discover and fix a subtle security weakness of the most recent remote diagnostic proposal, which allowed malicious clients to learn partial information about the program
Abstract-The privacy protection of the biometric data is an important research topic, especially in the case of distributed biometric systems. In this scenario, it is very important to guarantee that biometric data cannot be steeled by anyone, and that the biometric clients are unable to gather any information different from the single user verification/identification. In a biometric system with high level of privacy compliance, also the server that processes the biometric matching should not learn anything on the database and it should be impossible for the server to exploit the resulting matching values in order to extract any knowledge about the user presence or behavior.Within this conceptual framework, in this paper we propose a novel complete demonstrator based on a distributed biometric system that is capable to protect the privacy of the individuals by exploiting cryptosystems. The implemented system computes the matching task in the encrypted domain by exploiting homomorphic encryption and using Fingercode templates. The paper describes the design methodology of the demonstrator and the obtained results. The demonstrator has been fully implemented and tested in real applicative conditions. Experimental results show that this method is feasible in the cases where the privacy of the data is more important than the accuracy of the system and the obtained computational time is satisfactory.
Remote attestation protocols are widely used to detect device configuration (e.g., software and/or data) compromise in Internet of Things (IoT) scenarios. Unfortunately, the performances of such protocols are unsatisfactory when dealing with thousands of smart devices. Recently, researchers are focusing on addressing this limitation. The approach is to run attestation in a collective way, with the goal of reducing computation and communication. Despite these advances, current solutions for attestation are still unsatisfactory because of their complex management and strict assumptions concerning the topology (e.g., being time invariant or maintaining a fixed topology). In this paper, we propose PADS, a secure, efficient, and practical protocol for attesting potentially large networks of smart devices with unstructured or dynamic topologies. PADS builds upon the recent concept of non-interactive attestation, by reducing the collective attestation problem into a minimum consensus one. We compare PADS with a state-of-the art collective attestation protocol and validate it by using realistic simulations that show practicality and efficiency. The results confirm the suitability of PADS for low-end devices, and highly unstructured networks. 5
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.