Among the low power wide area network communication protocols for large scale Internet of Things, LoRaWAN is considered one of the most promising, owing to its flexibility and energy-saving capabilities. For these reasons, during recent years, the scientific community has invested efforts into assessing the fundamental performance limits and understanding the trade-offs between the parameters and performance of LoRaWAN communication for different application scenarios. However, this task cannot be effectively accomplished utilizing only analytical methods, and precise network simulators are needed. To that end, this paper presents LoRaWANSim, a LoRaWAN simulator implemented in MATLAB, developed to characterize the behavior of LoRaWAN networks, accounting for physical, medium access control and network aspects. In particular, since many simulators described in the literature are deployed for specific research purposes, they are usually oversimplified and hold a number of assumptions affecting the accuracy of their results. In contrast, our simulator has been developed for the sake of completeness and it is oriented towards an accurate representation of the LoRaWAN at the different layers. After a detailed description of the simulator, we report a validation of the simulator itself and we then conclude by presenting some results of its use revealing notable and non-intuitive trade-offs present in LoRaWAN. Such simulator will be made available via open access to the research community.
Low Power Wide Area Networks (LPWANs) have become an important enabler for the Internet of Things (IoT) connectivity. Application domains like smart cities, smart agriculture, intelligent logistics and transportation, require communication technologies that combine long transmission ranges and energy efficiency. Recent and future trends make Long Range Wide Area Network (LoRaWAN) and Narrowband-IoT (NB-IoT) the most prospective drivers of the IoT business. In this paper, after discussing the main features of the two technologies, we carry out a fair quantitative comparison between the two, investigating different performance indicators, in order to guide designers in the selection of the most appropriate technology, depending on the application requirements.
In recent years, interest in Unmanned Aerial Vehicles (UAVs) as a means to provide wireless connectivity has substantially increased thanks to their easy, fast and flexible deployment. Among the several possible applications of UAV networks explored by the current literature, they can be efficiently employed to collect Internet-of-Things (IoT) data because the non-stringent latency and small-size traffic type is particularly suited for UAVs’ inherent characteristics. However, the implications coming from the implementation of existing technology in such kinds of nodes are not straightforward. In this article, we consider a Narrow Band IoT (NB-IoT) network served by a UAV base station. Because of the many configurations possible within the NB-IoT standard, such as the access structure and numerology, we thoroughly review the technical aspects that have to be implemented and may be affected by the proposed UAV-aided IoT network. For proper remarks, we investigate the network performance jointly in terms of the number of successful transmissions, access rate, latency, throughput and energy consumption. Then, we compare the obtained results on different and known trajectories in the research community and study the impact of varying UAV parameters such as speed and height. Moreover, the numerical assessment allows us to extend the discussion to the potential implications of this model in different scenarios. Thus, this article summarizes all the main aspects that must be considered in planning NB-IoT networks with UAVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.