In today’s world, ruled by a great amount of data and mobile devices, cloud-based systems are spreading all over. Such phenomenon increases the number of connected devices, broadcast bandwidth, and information exchange. These fine-grained interconnected systems, which enable the Internet connectivity for an extremely large number of facilities (far beyond the current number of devices) go by the name of Internet of Things (IoT). In this scenario, mobile devices have an operating time which is proportional to the battery capacity, the number of operations performed per cycle and the amount of exchanged data. Since the transmission of data to a central cloud represents a very energy-hungry operation, new computational paradigms have been implemented. The computation is not completely performed in the cloud, distributing the power load among the nodes of the system, and data are compressed to reduce the transmitted power requirements. In the edge-computing paradigm, part of the computational power is moved toward data collection sources, and, only after a first elaboration, collected data are sent to the central cloud server. Indeed, the “edge” term refers to the extremities of systems represented by IoT devices. This survey paper presents the hardware architectures of typical IoT devices and sums up many of the low power techniques which make them appealing for a large scale of applications. An overview of the newest research topics is discussed, besides a final example of a complete functioning system, embedding all the introduced features.
In the last years, the need for new efficient video compression methods grown rapidly as frame resolution has increased dramatically. The Joint Collaborative Team on Video Coding (JCT-VC) effort produced in 2013 the H.265/High Efficiency Video Coding (HEVC) standard, which represents the state of the art in video coding standards. Nevertheless, in the last years, new algorithms and techniques to improve coding efficiency have been proposed. One promising approach relies on embedding direction capabilities into the transform stage. Recently, the Steerable Discrete Cosine Transform (SDCT) has been proposed to exploit directional DCT using a basis having different orientation angles. The SDCT leads to a sparser representation, which translates to improved coding efficiency. Preliminary results show that the SDCT can be embedded into the HEVC standard, providing better compression ratios. This paper presents a hardware architecture for the SDCT, which is able to work at a frequency of 188 M Hz , reaching a throughput of 3.00 GSample/s. In particular, this architecture supports 8k UltraHigh Definition (UHD) (7680 × 4320) with a frame rate of 60 Hz , which is one of the best resolutions supported by HEVC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.