We propose a differential equation modelling framework where the regulatory interactions among genes are expressed in terms of unate functions, a class of gene activation rules commonly encountered in Boolean network modelling. We establish analytical properties of the models in the class and exploit them to devise a two-step procedure for gene network reconstruction from product concentration and synthesis rate time series. The first step isolates a family of model structures compatible with the data from a set of most relevant biological hypotheses. The second step explores this family and returns a pool of best fitting models along with estimates of their parameters. The method is tested on a simulated network and compared with state-of-the-art network inference methods on the benchmark synthetic network IRMA.
We present a method for the structural identification of genetic regulatory networks (GRNs), based on the use of a class of Piecewise-Linear (PL) models. These models consist of a set of decoupled linear models describing the different modes of operation of the GRN and discrete switches between the modes accounting for the nonlinear character of gene regulation. They thus form a compromise between the mathematical simplicity of linear models and the biological expressiveness of nonlinear models. The input of the PL identification method consists of time-series measurements of concentrations of gene products. As output it produces estimates of the modes of operation of the GRN, as well as all possible minimal combinations of threshold concentrations of the gene products accounting for switches between the modes of operation. The applicability of the PL identification method has been evaluated using simulated data obtained from a model of the carbon starvation response in the bacterium Escherichia coli. This has allowed us to systematically test the performance of the method under different data characteristics, notably variations in the noise level and the sampling density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.