Here, we report the synthesis of three-dimensional (3D) polycaprolactone (PCL) nanofiber incorporated with core-satellite platinum nanoparticles (PtNPs, 2–3 nm) coated gold nanospheres (AuNPs, 30 nm) via the simple lactic acid assisted self-assembly electrospinning technique.
The Pt-AuNPs nanoparticle in core-satellite form has been prepared by following solution based methods and characterized with TEM, HR-TEM, UV-Visible, and XRD spectroscopic techniques. The surface morphology and structural analysis of 3D nanofiber scaffolds have been performed with FTIR, TGA,
FESEM, and HR-TEM analysis techniques and shown the successful preparation of 3D electrospun fibrous structure composed of Pt-AuNPs loaded PCL (PCL@Pt-AuNPs) as a potential biomaterial for bone tissue engineering applications.
Here, we report the polycaprolactone (PCL) based 2D nanofibrous scaffold with minimal loading (0.0005-0.002 wt%) of Au-reinforced graphene (RG) sheets for improved bone tissue regeneration. The microsized graphene oxide (GO) sheets (829 nm) were tailored strategically to 282 nm-sized monodispersed nanosheets for uniform electrostatic attachment of gold nanoparticles (GNPs). The GNPs-GO sheets were reduced to GNPs-RG sheets using a visible-light-induced chemical-free green method where the oxygen functional groups of GO have not been removed completely to enhance the functionality of GNPs-RG for bone tissue regeneration. The monodispersibility of GNPs-RG sheets helped to prepare PCL-based nanofibrous scaffolds with uniformly distributed GNPs-RG (0.002 wt%) with higher electrical conductivity (>3.5 times) and greater mechanical strength (>4.5 times). The electrostatic field simulation studies with COMSOL suggested that there was a uniform distribution of the electric field. The GNPs-RG addition creates an apt adhesion site due to their multifunctional and conductive properties for PCL@GNPs-RG nanofibrous scaffold which resulted in enhanced cell adhesion and proliferation of MC3T3-E1 cells. The PCL@GNPs-RG nanofibrous scaffold showed higher alkaline phosphatase activity and improved calcium mineralization after 21 d of incubation. The results indicated that the PCL@GNPs-RG scaffold has a promising capacity and potential for bone tissue regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.