We propose to change the default P-value threshold for statistical significance from 0.05 to 0.005 for claims of new discoveries. T he lack of reproducibility of scientific studies has caused growing concern over the credibility of claims of new discoveries based on 'statistically significant' findings. There has been much progress toward documenting and addressing several causes of this lack of reproducibility (for example, multiple testing, P-hacking, publication bias and under-powered studies). However, we believe that a leading cause of non-reproducibility has not yet been adequately addressed: statistical standards of evidence for claiming new discoveries in many fields of science are simply too low. Associating statistically significant findings with P < 0.05 results in a high rate of false positives even in the absence of other experimental, procedural and reporting problems.For fields where the threshold for defining statistical significance for new discoveries is P < 0.05, we propose a change to P < 0.005. This simple step would immediately improve the reproducibility of scientific research in many fields. Results that would currently be called significant but do not meet the new threshold should instead be called suggestive. While statisticians have known the relative weakness of using P ≈ 0.05 as a threshold for discovery and the proposal to lower it to 0.005 is not new 1,2 , a critical mass of researchers now endorse this change.We restrict our recommendation to claims of discovery of new effects. We do not address the appropriate threshold for confirmatory or contradictory replications of existing claims. We also do not advocate changes to discovery thresholds in fields that have already adopted more stringent standards (for example, genomics and high-energy physics research; see the 'Potential objections' section below).We also restrict our recommendation to studies that conduct null hypothesis significance tests. We have diverse views about how best to improve reproducibility, and many of us believe that other ways of summarizing the data, such as Bayes factors or other posterior summaries based on clearly articulated model assumptions, are preferable to P values. However, changing the P value threshold is simple, aligns with the training undertaken by many researchers, and might quickly achieve broad acceptance.
It is common practice in statistical data analysis to perform data-driven variable selection and derive statistical inference from the resulting model. Such inference enjoys none of the guarantees that classical statistical theory provides for tests and confidence intervals when the model has been chosen a priori. We propose to produce valid ``post-selection inference'' by reducing the problem to one of simultaneous inference and hence suitably widening conventional confidence and retention intervals. Simultaneity is required for all linear functions that arise as coefficient estimates in all submodels. By purchasing ``simultaneity insurance'' for all possible submodels, the resulting post-selection inference is rendered universally valid under all possible model selection procedures. This inference is therefore generally conservative for particular selection procedures, but it is always less conservative than full Scheffe protection. Importantly it does not depend on the truth of the selected submodel, and hence it produces valid inference even in wrong models. We describe the structure of the simultaneous inference problem and give some asymptotic results.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1077 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
Objectives: Discussions of fairness in criminal justice risk assessments typically lack conceptual precision. Rhetoric too often substitutes for careful analysis. In this paper, we seek to clarify the tradeoffs between different kinds of fairness and between fairness and accuracy.Methods: We draw on the existing literatures in criminology, computer science and statistics to provide an integrated examination of fairness and accuracy in criminal justice risk assessments. We also provide an empirical illustration using data from arraignments.Results: We show that there are at least six kinds of fairness, some of which are incompatible with one another and with accuracy.Conclusions: Except in trivial cases, it is impossible to maximize accuracy and fairness at the same time, and impossible simultaneously to satisfy all kinds of fairness. In practice, a major complication is different base rates across different legally protected groups. There is a need to consider challenging tradeoffs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.