Here we conducted a large-scale genetic association analysis of educational attainment in a sample of approximately 1.1 million individuals and identify 1,271 independent genome-wide-significant SNPs. For the SNPs taken together, we found evidence of heterogeneous effects across environments. The SNPs implicate genes involved in brain-development processes and neuron-to-neuron communication. In a separate analysis of the X chromosome, we identify 10 independent genome-wide-significant SNPs and estimate a SNP heritability of around 0.3% in both men and women, consistent with partial dosage compensation. A joint (multi-phenotype) analysis of educational attainment and three related cognitive phenotypes generates polygenic scores that explain 11-13% of the variance in educational attainment and 7-10% of the variance in cognitive performance. This prediction accuracy substantially increases the utility of polygenic scores as tools in research.
We propose to change the default P-value threshold for statistical significance from 0.05 to 0.005 for claims of new discoveries. T he lack of reproducibility of scientific studies has caused growing concern over the credibility of claims of new discoveries based on 'statistically significant' findings. There has been much progress toward documenting and addressing several causes of this lack of reproducibility (for example, multiple testing, P-hacking, publication bias and under-powered studies). However, we believe that a leading cause of non-reproducibility has not yet been adequately addressed: statistical standards of evidence for claiming new discoveries in many fields of science are simply too low. Associating statistically significant findings with P < 0.05 results in a high rate of false positives even in the absence of other experimental, procedural and reporting problems.For fields where the threshold for defining statistical significance for new discoveries is P < 0.05, we propose a change to P < 0.005. This simple step would immediately improve the reproducibility of scientific research in many fields. Results that would currently be called significant but do not meet the new threshold should instead be called suggestive. While statisticians have known the relative weakness of using P ≈ 0.05 as a threshold for discovery and the proposal to lower it to 0.005 is not new 1,2 , a critical mass of researchers now endorse this change.We restrict our recommendation to claims of discovery of new effects. We do not address the appropriate threshold for confirmatory or contradictory replications of existing claims. We also do not advocate changes to discovery thresholds in fields that have already adopted more stringent standards (for example, genomics and high-energy physics research; see the 'Potential objections' section below).We also restrict our recommendation to studies that conduct null hypothesis significance tests. We have diverse views about how best to improve reproducibility, and many of us believe that other ways of summarizing the data, such as Bayes factors or other posterior summaries based on clearly articulated model assumptions, are preferable to P values. However, changing the P value threshold is simple, aligns with the training undertaken by many researchers, and might quickly achieve broad acceptance.
SummaryEducational attainment (EA) is strongly influenced by social and other environmental factors, but genetic factors are also estimated to account for at least 20% of the variation across individuals1. We report the results of a genome-wide association study (GWAS) for EA that extends our earlier discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication in an independent sample of 111,349 individuals from the UK Biobank. We now identify 74 genome-wide significant loci associated with number of years of schooling completed. Single-nucleotide polymorphisms (SNPs) associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioral phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because EA is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric disease.
We introduce Multi-Trait Analysis of GWAS (MTAG), a method for joint analysis of summary statistics from GWASs of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (Neff = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). Compared to 32, 9, and 13 genome-wide significant loci in the single-trait GWASs (most of which are themselves novel), MTAG increases the number of loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase variance explained by polygenic scores by approximately 25%, matching theoretical expectations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.