We compute the thermodynamic properties of the Sachdev-Ye-Kitaev (SYK) models of fermions with a conserved fermion number, Q. We extend a previously proposed Schwarzian effective action to include a phase field, and this describes the low temperature energy and Q fluctuations. We obtain higherdimensional generalizations of the SYK models which display disordered metallic states without quasiparticle excitations, and we deduce their thermoelectric transport coefficients. We also examine the corresponding properties of Einstein-Maxwell-axion theories on black brane geometries which interpolate from either AdS 4 or AdS 5 to an AdS 2 × R 2 or AdS 2 × R 3 near-horizon geometry. These provide holographic descriptions of non-quasiparticle metallic states without momentum conservation. We find a precise match between low temperature transport and thermodynamics of the SYK and holographic models. In both models the Seebeck transport coefficient is exactly equal to the Q-derivative of the entropy. For the SYK models, quantum chaos, as characterized by the butterfly velocity and the Lyapunov rate, universally determines the thermal diffusivity, but not the charge diffusivity.
We study heat transport in two systems without momentum conservation: a hydrodynamic system, and a holographic system with spatially dependent, massless scalar fields. When momentum dissipates slowly, there is a well-defined, coherent collective excitation in the AC heat conductivity, and a crossover between sound-like and diffusive transport at small and large distance scales. When momentum dissipates quickly, there is no such excitation in the incoherent AC heat conductivity, and diffusion dominates at all distance scales. For a critical value of the momentum dissipation rate, we compute exact expressions for the Green's functions of our holographic system due to an emergent gravitational self-duality, similar to electric/magnetic duality, and SL(2,R) symmetries. We extend the coherent/incoherent classification to examples of charge transport in other holographic systems: probe brane theories and neutral theories with non-Maxwell actions.
We study the effects of momentum relaxation on observables in a recently proposed holographic model in which the conservation of momentum in the field theory is broken by the presence of a bulk graviton mass. In the hydrodynamic limit, we show that these effects can be incorporated by a simple modification of the energy-momentum conservation equation to account for the dissipation of momentum over a single characteristic timescale. We compute this timescale as a function of the graviton mass terms and identify the previously known "wall of stability" as the point at which this relaxation timescale becomes negative. We also calculate analytically the zero temperature AC conductivity at low frequencies. In the limit of a small graviton mass this reduces to the simple Drude form, and we compute the corrections to this which are important for larger masses. Finally, we undertake a preliminary investigation of the stability of the zero temperature black brane solution of this model, and rule out spatially modulated instabilities of a certain kind.
We present a strange metal, described by a holographic duality, which reproduces the famous linear resistivity of the normal state of the copper oxides, in addition to the linear specific heat. This holographic metal reveals a simple and general mechanism for producing such a resistivity, which requires only quenched disorder and a strongly interacting, locally quantum critical state. The key is the minimal viscosity of the latter: unlike in a Fermi liquid, the viscosity is very small and therefore is important for the electrical transport. This mechanism produces a resistivity proportional to the electronic entropy.
Recent developments have indicated that in addition to out-of-time ordered correlation functions (OTOCs), quantum chaos also has a sharp manifestation in the thermal energy density two-point functions, at least for maximally chaotic systems. The manifestation, referred to as pole-skipping, concerns the analytic behaviour of energy density two-point functions around a special point ω = iλ, k = iλ/v B in the complex frequency and momentum plane. Here λ and v B are the Lyapunov exponent and butterfly velocity characterising quantum chaos. In this paper we provide an argument that the phenomenon of pole-skipping is universal for general finite temperature systems dual to Einstein gravity coupled to matter. In doing so we uncover a surprising universal feature of the linearised Einstein equations around a static black hole geometry. We also study analytically a holographic axion model where all of the features of our general argument as well as the pole-skipping phenomenon can be verified in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.