Nonselective inverse agonists at the gamma-aminobutyric acid(A) (GABA-A) benzodiazepine binding site have cognition-enhancing effects in animals but are anxiogenic and can precipitate convulsions. Herein, we describe novel GABA-A alpha5 subtype inverse agonists leading to the identification of 16 as an orally active, functionally selective compound that enhances cognition in animals without anxiogenic or convulsant effects. Compounds of this type may be useful in the symptomatic treatment of memory impairment associated with Alzheimer's disease and related dementias.
The identification of a novel series of 7,8,9,10-tetrahydro-(7,10-ethano)-1,2,4-triazolo[3,4-a]phthalazines as GABA(A)alpha5 inverse agonists, which have both binding and functional (efficacy) selectivity for the benzodiazepine binding site of alpha5- over alpha1-, alpha2-, and alpha3-containing GABA(A) receptor subtypes, is described. Binding selectivity was determined to a large part by the degree of planarity of the fused ring system whereas functional selectivity was dependent on the nature of the heterocycle at the 3-position of the triazolopyridazine ring. 3-Furan and 5-methylisoxazole were shown to be optimal for GABA(A)alpha5 functional selectvity. 3-(5-Methylisoxazol-3-yl)-6-(2-pyridyl)methyloxy-1,2,4-triazolo[3,4-a]phthalazine (43) was identified as a full inverse agonist at the GABA(A)alpha5 subtype with functional selectivity over the other GABA(A) receptor subtypes and good oral bioavailability.
The synthesis and the 5-HT receptor activity of a novel series of N,N-dimethyltryptamines substituted in the 5-position with an imidazole, triazole, or tetrazole ring are described. The objective of this work was to identify potent and selective 5-HT1D receptor agonists with high oral bioavailability and low central nervous system penetration. Compounds have been prepared in which the azole ring is attached through either nitrogen or carbon to the indole. Conjugated and methylene-bridged derivatives have been studied (n = 0 or 1). Substitution of the azole ring has been explored either alpha or beta to the point of attachment to indole. In a series of N-linked azoles (X = N), simple unsubstituted compounds have high affinity and selectivity for 5-HT1D receptors. It is proposed that for good affinity and selectivity a hydrogen bond acceptor interaction with the 5-HT1D receptor, through a beta-nitrogen in the azole ring, is required. In a series of C-linked triazoles and tetrazoles (X = C), optimal affinity and selectivity for the 5-HT1D receptor was observed when the azole ring is substituted at the 1-position with a methyl or ethyl group. This study has led to the discovery of the 1,2,4-triazole 10a (MK-462) as a potent and selective 5-HT1D receptor agonist which has high oral bioavailability and rapid oral absorption. The in vitro activity and the preliminary pharmacokinetics of compounds in this series are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.