Abstract. The Orbiting Carbon Observatory-2 (OCO-2) carries and points a three-channel imaging grating spectrometer designed to collect high-resolution, co-boresighted spectra of reflected sunlight within the molecular oxygen (O 2 ) Aband at 0.765 microns and the carbon dioxide (CO 2 ) bands at 1.61 and 2.06 microns. These measurements are calibrated and then combined into soundings that are analyzed to retrieve spatially resolved estimates of the column-averaged CO 2 dry-air mole fraction, XCO 2 . Variations of XCO 2 in space and time are then analyzed in the context of the atmospheric transport to quantify surface sources and sinks of CO 2 . This is a particularly challenging remote-sensing observation because all but the largest emission sources and natural absorbers produce only small (< 0.25 %) changes in the background XCO 2 field. High measurement precision is therefore essential to resolve these small variations, and high accuracy is needed because small biases in the retrieved XCO 2 distribution could be misinterpreted as evidence for CO 2 fluxes.To meet its demanding measurement requirements, each OCO-2 spectrometer channel collects 24 spectra s −1 across a narrow (< 10 km) swath as the observatory flies over the sunlit hemisphere, yielding almost 1 million soundings each day. On monthly timescales, between 7 and 12 % of these soundings pass the cloud screens and other data quality filters to yield full-column estimates of XCO 2 . Each of these soundings has an unprecedented combination of spatial resolution (< 3 km 2 /sounding), spectral resolving power (λ/ λ > 17 000), dynamic range (∼ 10 4 ), and sensitivity (continuum signal-to-noise ratio > 400).The OCO-2 instrument performance was extensively characterized and calibrated prior to launch. In general, the instrument has performed as expected during its first 18 months in orbit. However, ongoing calibration and science analysis activities have revealed a number of subtle radiometric and spectroscopic challenges that affect the yield and quality of the OCO-2 data products. These issues include increased numbers of bad pixels, transient artifacts introduced by cosmic rays, radiance discontinuities for spatially non-uniform scenes, a misunderstanding of the instrument polarization orientation, and time-dependent changes in the throughput of the oxygen A-band channel. Here, we describe the OCO-2 instrument, its data products, and its on-orbit performance. We then summarize calibration challenges encountered during its first 18 months in orbit and the methods used to mitigate their impact on the calibrated radiance spectra distributed to the science community.
Abstract. The Orbiting Carbon Observatory-2 (OCO-2) is the first National Aeronautics and Space Administration (NASA) satellite designed to measure atmospheric carbon dioxide (CO 2 ) with the accuracy, resolution, and coverage needed to quantify CO 2 fluxes (sources and sinks) on regional scales. OCO-2 was successfully launched on 2 July 2014 and has gathered more than 2 years of observations. The v7/v7r operational data products from September 2014 to January 2016 are discussed here. On monthly timescales, 7 to 12 % of these measurements are sufficiently cloud and aerosol free to yield estimates of the column-averaged atmospheric CO 2 dry air mole fraction, X CO 2 , that pass all quality tests. During the first year of operations, the observing strategy, instrument calibration, and retrieval algorithm were optimized to improve both the data yield and the accuracy of the products. With these changes, global maps of X CO 2 derived from the OCO-2 data are revealing some of the most robust features of the atmospheric carbon cycle. This includes X CO 2 enhancements co-located with intense fossil fuel emissions in eastern US and eastern China, which are most obvious between October and December, when the north-south X CO 2 gradient is small. Enhanced X CO 2 coincident with biomass burning in the Amazon, central Africa, and Indonesia is also evident in this season. In May and June, when the north-south X CO 2 gradient is largest, these sources are less apparent in global maps. During this part of the year, OCO-2 maps show a more than 10 ppm reduction in X CO 2 across the Northern Hemisphere, as photosynthesis by the land biosphere rapidly absorbs CO 2 . As the carbon cycle science community continues to analyze these OCO-2 data, information on regional-scale sources (emitters) and sinks (absorbers) which impart X CO 2 changes on the order of 1 ppm, as well as far more subtle features, will emerge from this high-resolution global dataset.
Novel coronavirus disease 2019 (COVID-19) is a highly infectious, rapidly spreading viral disease with an alarming case fatality rate up to 5%. The risk factors for severe presentations are concentrated in patients with chronic kidney disease, particularly patients with end-stage renal disease (ESRD) who are dialysis dependent. We report the first US case of a 56-year-old nondiabetic male with ESRD secondary to IgA nephropathy undergoing thrice-weekly maintenance hemodialysis for 3 years, who developed COVID-19 infection. He has hypertension controlled with angiotensin receptor blocker losartan 100 mg/day and coronary artery disease status-post stent placement. During the first 5 days of his febrile disease, he presented to an urgent care, 3 emergency rooms, 1 cardiology clinic, and 2 dialysis centers in California and Utah. During this interval, he reported nausea, vomiting, diarrhea, and low-grade fevers but was not suspected of COVID-19 infection until he developed respiratory symptoms and was admitted to the hospital. Imaging studies upon admission were consistent with bilateral interstitial pneumonia. He was placed in droplet-eye precautions while awaiting COVID-19 test results. Within the first 24 h, he deteriorated quickly and developed acute respiratory distress syndrome (ARDS), requiring intubation and increasing respiratory support. Losartan was withheld due to hypotension and septic shock. COVID-19 was reported positive on hospital day 3. He remained in critical condition being treated with hydroxychloroquine and tocilizumab in addition to the standard medical management for septic shock and ARDS. Our case is unique in its atypical initial presentation and highlights the importance of early testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.