Heat treatment of colostrum is performed on modern dairy farms to reduce pathogenic contamination before hand-feeding the colostrum to newborn calves; however, limited data are available concerning effects of heat treatment on biologically active proteins in colostrum. The objective of this exploratory study was to investigate effects of heat treatment and length of heat treatment on colostrum protein profile. Colostrum samples were collected from Holstein cows within 12 h after parturition and assigned to the following groups: heat treatment at 60°C for 0 (untreated control), 30, 60, or 90 min. Samples were fractionated using acid precipitation, followed by ultracentrifugation and ProteoMiner (Bio-Rad Laboratories, Hercules, CA) treatment, and tandem-mass tagging was used to comparatively assess the low abundance protein profile. A total of 162 proteins were identified with more than 2 peptides in the low abundance protein enriched fraction. Of these, 62 differed in abundance by more than 2-fold in heat-treated samples compared with the unheated control. The majority of proteins affected by heat treatment were involved in immunity, enzyme function, and transport-related processes; affected proteins included lactadherin, chitinase-3-like protein 1, and complement component C9. These results provide a foundation for further research to determine optimum heat treatment practices to ensure newborn calves are fed colostrum-containing proteins with the highest nutritional and biological value.
Grape marc (GPM) is a viticulture by-product that is rich in secondary compounds, including condensed tannins (CT), and is used as a supplement in livestock feeding practices. The aim of this study was to determine whether feeding GPM to lactating dairy cows would alter the milk proteome through changes in nitrogen (N) partitioning. Ten lactating Holstein cows were fed a total mixed ration (TMR) top-dressed with either 1.5 kg dry matter (DM)/cow/day GPM (GPM group; n = 5) or 2.0 kg DM/cow/day of a 50:50 beet pulp: soy hulls mix (control group; n = 5). Characterization of N partitioning and calculation of N partitioning was completed through analysis of plasma urea-N, urine, feces, and milk urea-N. Milk samples were collected for general composition analysis, HPLC quantification of the high abundance milk proteins (including casein isoforms, α-lactalbumin, and β-lactoglobulin) and liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the low abundance protein enriched milk fraction. No differences in DMI, N parameters, or calculated N partitioning were observed across treatments. Dietary treatment did not affect milk yield, milk protein or fat content or yield, or the concentrations of high abundance milk proteins quantified by HPLC analysis. Of the 127 milk proteins that were identified by LC-MS/MS analysis, 16 were affected by treatment, including plasma proteins and proteins associated with the blood-milk barrier, suggesting changes in mammary passage. Immunomodulatory proteins, including butyrophilin subfamily 1 member 1A and serum amyloid A protein, were higher in milk from GPM-fed cows. Heightened abundance of bioactive proteins in milk caused by dietary-induced shifts in mammary passage could be a feasible method to enhance the healthfulness of milk for both the milk-fed calf and human consumer. Additionally, the proteome shifts observed in this trial could provide a starting point for the identification of biomarkers suitable for use as indicators of mammary function.
The objective of this experiment was to identify and characterize the bovine milk proteome within the skim milk fraction and milk fat globule membrane (MFGM)-associated fraction from 16 organically certified lactating Jersey cows after a short term of grazing pastures with or without annual forage crops (AFC). Cows were offered a partial mixed ration (~60% of dry matter intake) and approximately 40% of their total dry matter intake as herbage. Eight cows were offered a cool-season grass–legume herbage (GLH), which included orchardgrass ( Dactylis glomerata ), timothy ( Phleum pratense ), Kentucky bluegrass ( Poa pratensis ), and white clover ( Trifolium repens ). The other 8 cows were offered the same GLH strip-tilled with the AFC, including oat ( Avena sativa ), millet ( Pennisetum glaucum ), teff ( Eragrostis tef ), buckwheat ( Fagopyrum esculentum ), and chickling vetch ( Lathyrus sativus ). Milk samples were collected from each cow during a.m. and p.m. milkings on d 19 to 21 of grazing, and composite milk samples per cow were analyzed for (1) the high-abundance milk protein profile, (2) the skim milk low-abundance protein-enriched proteome, and (3) the MFGM proteome. Of the 443 proteins identified in the skim and MFGM proteomes, 433 were included in statistical analysis, including 68 proteins identified in the skim milk fraction and 365 in the MFGM-associated fraction. Analysis of the skim and MFGM proteomes encompassed unique gene ontology profiles and proportions of functional classifications. In response to diet, α S1 -casein as well as 8 low-abundance proteins were present in higher concentration or abundance in milk from cows grazing the GLH strip-tilled with the AFC compared with milk from cows grazing GLH, suggesting that even short-term grazing of pastures including some AFC may affect the milk proteome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.