In the past, studies of stratosphere-tropo-sphere exchange of mass and chemical species have mainly emphasized the synoptic-and small-scale mechanisms of exchange. This review, however, includes also the global-scale aspects of exchange, such as the transport across an isentropic surface (potential temperature about 380 K) that in the tropics lies just above the tropopause, near the 100-hPa pressure level. Such a surface divides the stratosphere into an "over-world" and an extratropical "lowermost strato-sphere" that for transport purposes need to be sharply distinguished. This approach places stratosphere-tro-posphere exchange in the framework of the general circulation and helps to clarify the roles of the different mechanisms involved and the interplay between large and small scales. The role of waves and eddies in the extratropical overworld is emphasized. There, wave-induced forces drive a kind of global-scale extratropi-cal "fluid-dynamical suction pump," which withdraws air upward and poleward from the tropical lower stratosphere and pushes it poleward and downward into the extratropical troposphere. The resulting global scale circulation drives the stratosphere away from radiative equilibrium conditions. Wave-induced forces may be considered to exert a nonlocal control, mainly downward in the extratropics but reaching laterally into the tropics, over the transport of mass across lower stratospheric isentropic surfaces. This mass transport is for many purposes a useful measure of global-scale stratosphere-troposphere exchange, especially on seasonal or longer timescales. Because the strongest wave-induced forces occur in the northern hemisphere winter season, the exchange rate is also a maximum at that season. The global exchange rate is not determined by details of near-tropopause phenomena such as penetrative cumulus convection or small-scale mixing associated with upper level fronts and cyclones. These smaller-scale processes must be considered , however, in order to understand the finer details of exchange. Moist convection appears to play an important role in the tropics in accounting for the extreme dehydration of air entering the stratosphere. Stratospheric air finds its way back into the tropo-sphere through a vast variety of irreversible eddy exchange phenomena, including tropopause folding and the formation of so-called tropical upper tropo-spheric troughs and consequent irreversible exchange. General circulation models are able to simulate the mean global-scale mass exchange and its seasonal cycle but are not able to properly resolve the tropical dehydration process. Two-dimensional (height-latitude) models commonly used for assessment of human impact on the ozone layer include representation of stratosphere-troposphere exchange that is adequate to allow reasonable simulation of photochemical processes occurring in the overworld. However, for assessing changes in the lowermost stratosphere, the strong longitudinal asymmetries in stratosphere-troposphere exchange render current two-dimensional m...
Abstract. The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate the atmospheric sulfur cycle. The model uses the assimilated meteorological data from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). Global sulfur budgets from a 6-year simulation for SOe, sulfate, dimethylsulfide (DMS), and methanesulfonic acid (MSA) are presented in this paper. In a normal year without major volcanic perturbations, about 20% of the sulfate precursor emission is from natural sources (biogenic and volcanic), and 80% is anthropogenic; the same sources contribute 33% and 67%, respectively, to the total sulfate burden. A sulfate production efficiency of 0.41-0.42 is estimated in the model, an efficiency which is defined as a ratio of the amount of sulfate produced to the total amount of SOe emitted and produced in the atmosphere. This value indicates that less than half of the SOe entering the atmosphere contributes to the sulfate production, the rest being removed by dry and wet depositions. In a simulation for 1990 we estimate a total sulfate production of 39 Tg S yr -•, with 36% and 64% from in-air and in-cloud oxidation, respectively, of SOe. We also demonstrate that major volcanic eruptions, such as the Mount Pinatubo eruption in 1991, can significantly change the sulfate formation pathways, distributions, abundance, and lifetime. Comparison with other models shows that the parameterizations for wet removal or wet production of sulfate are the most critical factors in determining the burdens of SO2 and sulfate. Therefore a priority for future research should be to reduce the large uncertainties associated with the wet physical and chemical processes.
The Data Assimilation Office at NASA's Goddard Space Flight Center is currently producing a multiyear gridded global atmospheric dataset for use in climate research, including tropospheric chemistry applications. The data, which are being made available to the scientific community, are well suited for climate research since they are produced by a fixed assimilation system designed to minimize the spinup in the hydrological cycle. By using a nonvarying system, the variability due to algorithm change is eliminated and geophysical variability can be more confidently isolated. The analysis incorporates rawinsonde reports, satellite retrievals of geopotential thickness, cloud-motion winds, and aircraft, ship, and rocketsonde reports. At the lower boundary, the assimilating atmospheric general circulation model is constrained by the observed sea surface temperature and soil moisture derived from observed surface air temperature and precipitation fields. The available output data include all prognostic variables and a large number of diagnostic quantities such as heating rates, precipitation, surface fluxes, cloud fraction, and the height of the planetary boundary layer. These variables were chosen to assure a complete budget of the energy and moisture cycles. The assimilated data should also be useful for estimating transport by cumulus processes. The analysis increments (observation minus first guess) and the estimated analysis errors are provided to help the user assess the quality of the data. All quantities are made available every 6 h at the full resolution of the assimilating general circulation model. Selected surface quantities are made available every 3 h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.