S U M M A R YProliferative kidney disease (PKD) of salmonids, caused by Tetracapsuloides bryosalmonae, can lead to high mortalities at elevated water temperature. We evaluated the hypothesis that this mortality is caused by increasing parasite intensity. T. bryosalmonae-infected rainbow trout (Oncorhynchus mykiss) were reared at different water temperatures and changes in parasite concentrations in the kidney were compared to cumulative mortalities. Results of parasite quantification by a newly developed real-time PCR agreed with the number of parasites detected by immunohistochemistry, except for very low or very high parasite loads because of heterogenous distribution of the parasites in the kidney. Two experiments were performed, where fish were exposed to temperatures of 12, 14, 16, 18 or 19 xC after an initial exposure to an infectious environment at 12-16 xC resulting in 100% prevalence of infected fish after 5 to 14 days of exposure. While mortalities differed significantly between all investigated water temperatures, significant differences in final parasite loads were only found between fish kept at 12 xC and all other groups. Differences in parasite load between fish kept at 14 xC to 19 xC were not significant. These findings provide evidence that there is no direct link between parasite intensity and fish mortality.
In our study, we aim to characterize the estrogenicity of 18 independent rivers that receive effluent from sewage treatment works. During the winter and summer of 2003, we collected multiple water samples and measured environmental estrogens with an in vitro yeast-based reporter gene assay; estrogenicity was expressed as ng 17beta-estradiol equivalents (EEQ) per L of water. Estradiol equivalents values in winter ranged from 0.3 to 2.0 ng/L and, in summer, from 0.4 to 7.0 ng/L. Winter and summer EEQ values were not correlated with each other or with the dilution factor of the effluent in the river. Variation in EEQ values was large and correlated from winter to summer. Part of this variation in estrogenicity is explained by water flow rates; variation is larger at reduced flow rates. We measured plasma vitellogenin concentrations in immature male brown trout. At five sites, vitellogenin concentrations exceeded 1 microg/ml; however, at the majority of the sites, plasma vitellogenin concentrations were below 0.5 microg/ml. Our data indicate that the exposure of brown trout to environmental estrogens in Swiss midland rivers is low. However, some sites show reoccurring higher EEQ values and, at some sites, plasma vitellogenin concentrations in male fish clearly are elevated.
Parasite drug resistance is partly conferred by single-nucleotide polymorphisms (SNPs), and monitoring them has been proposed as an alternative to monitoring drug resistance. Therefore, techniques are required to facilitate analyses of multiple SNPs on an epidemiological scale. We report a rapid and affordable microarray technique for application in epidemiological studies of malaria drug resistance. We have designed a multiwell microarray that is used in conjunction with PCR-amplified target genes implicated in the drug resistance of malaria with subsequent one-tube minisequencing using two fluorochromes. The drug-resistance-associated genes pfdhfr, pfdhps, pfcrt, pfmdr1, and pfATPase were amplified and analyzed for cultured Plasmodium falciparum strains and from field samples. We obtained a specificity of 94%, and comparison of field sample results to those of restriction fragment length polymorphism (RFLP) typing resulted in an overall consistency of >90%, except for pfdhfr51, for which most discrepancies were due to false determinations by RFLP of mixed infections. The system is sufficiently sensitive to assay parasites in clinical malaria cases and in most asymptomatic cases, and it allows high throughput with minimal hands-on time. The cost for the assay has been calculated as 0.27 euros/SNP (US$0.33), which is below the cost incurred with other systems. Due to the simplicity of the approach, newly identified SNPs can be incorporated rapidly. Such a monitoring system also makes it possible to identify the reemergence of drug-susceptible parasites once a drug has been withdrawn.
This field study examined the vitellogenin (VTG) biomarker response under conditions of low and fluctuating activities of environmental estrogenicity. The present study was performed on immature brown trout (Salmo trutta) exposed to the small river Luetzelmurg, which is located in the prealpine Swiss midland region and receives effluents from a single sewage treatment plant (STP). To understand better factors influencing the relationship between estrogenic exposure and VTG induction, we compared VTG levels in caged (stationary) and feral (free-ranging) fish, VTG levels in fish from up- and downstream of the STP, and two different methods for quantifying VTG (enzyme-linked immunosorbent assay vs real-time reverse transcription-polymerase chain reaction), and we used passive samplers (polar organic chemical integrative sampler [POCIS]) to integrate the variable, bioaccumulative estrogenic load in the river water over time. The POCIS from the downstream site contained approximately 20-fold higher levels of bioassay-derived estrogen equivalents than the POCIS from the upstream site. In feral fish, this site difference in estrogenic exposure was reflected in VTG protein levels but not in VTG mRNA. In contrast, in caged fish, the site difference was evident only for VTG mRNA but not for VTG protein. Thus, the outcome of VTG biomarker measurements varied with the analytical detection method (protein vs mRNA) and with the exposure modus (caged vs feral). Our findings suggest that for environmental situations with low and variable estrogenic contamination, a multiple-assessment approach may be necessary for the assessment of estrogenic exposure in fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.