We have developed an analytical method, consisting of ion-pair liquid chromatography coupled to electrospray ionization mass spectrometry (IP-LC-ESI-MS), for the simultaneous quantitative analysis of several key classes of polar metabolites, like nucleotides, coenzyme A esters, sugar nucleotides, and sugar bisphosphates. The use of the ion-pair agent hexylamine and optimization of the pH of the mobile phases were critical parameters in obtaining good retention and peak shapes of many of the above-mentioned polar and acidic metabolites that are impossible to analyze using standard reversed-phase LC/MS. Optimum conditions were found when using a gradient from 5 mM hexylamine in water (pH 6.3) to 90% methanol/10% 10 mM ammonium acetate (pH 8.5). The IP-LC-ESI-MS method was extensively validated by determining the linearity (R2 > 0.995), sensitivity (limit of detection 0.1-1 ng), repeatability, and reproducibility (relative standard deviation <10%). The IP-LC-ESI-MS method was shown to be a useful tool for microbial metabolomics, i.e., the comprehensive quantitative analysis of metabolites in extracts of microorganisms, and for the determination of the energy charge, i.e., the cellular energy status, as an overall quality measure for the sample workup and analytical protocols.
A commercial prebiotic galacto-oligosaccharide mixture (Vivinal GOS) was extensively characterized using a combination of analytical techniques. The different techniques were integrated to give complementary information on specific characteristics of the oligosaccharide mixture, ranging from global information on degree of polymerization (DP) to the identity and concentration of individual oligosaccharides. The coupling of high-performance anion-exchange chromatography (HPAEC) to mass spectrometry (MS) was determined to be especially suitable to assign the DP of individual oligosaccharides on the basis of their m/z values as well as their quantification using external standards. The combination of NMR spectroscopy and methylation analysis after isolation using size exclusion chromatography (SEC) and hydrophilic interaction liquid chromatography (HILIC) was used for identification. All DP2 compounds could be identified and quantified in this way as well as the main DP3 compounds.
Bisphenol A diglycidyl ether (BADGE) is an epoxide that is used as a starting substance in the manufacture of can coatings for food-contact applications. Following migration from the can coating into food, BADGE levels decay and new reaction products are formed by reaction with food ingredients. The significant decay of BADGE was demonstrated by liquid chromatographic (LC) analysis of foodstuffs, that is, tuna, apple puree, and beer, spiked with BADGE before processing and storage. Life-science inspired analytical approaches were successfully applied to study the reactions of BADGE with food ingredients, for example, amino acids and sugars. An improved mass balance of BADGE was achieved by selective detection of reaction products of BADGE with low molecular weight food components, using a successful combination of stable isotopes of BADGE and analysis by LC coupled to fluorescence detection (FLD) and high-resolution mass spectrometric (MS) detection. Furthermore, proteomics approaches showed that BADGE also reacts with peptides (from protein digests in model systems) and with proteins in foods. The predominant reaction center for amino acids, peptides, and proteins was cysteine.
Edited by: Joseph Bruton
New Findings r What is the central question of this study?Exercise is known to induce stress-related physiological responses, such as changes in intestinal barrier function. Our aim was to determine the test-retest repeatability of these responses in well-trained individuals. r What is the main finding and its importance?Responses to strenuous exercise, as indicated by stress-related markers such as intestinal integrity markers and myokines, showed high test-retest variation. Even in well-trained young men an adapted response is seen after a single repetition after 1 week. This finding has implications for the design of studies aimed at evaluating physiological responses to exercise.Strenuous exercise induces different stress-related physiological changes, potentially including changes in intestinal barrier function. In the Protégé Study (ISRCTN14236739; www.isrctn.com), we determined the test-retest repeatability in responses to exercise in well-trained individuals. Eleven well-trained men (27 ± 4 years old) completed an exercise protocol that consisted of intensive cycling intervals, followed by an overnight fast and an additional 90 min cycling phase at 50% of maximal workload the next morning. The day before (rest), and immediately after the exercise protocol (exercise) a lactulose and rhamnose solution was ingested. Markers of energy metabolism, lactulose-to-rhamnose ratio, several cytokines and potential stress-related markers were measured at rest and during exercise. In addition, untargeted urine metabolite profiles were obtained. The complete procedure (Test) was repeated 1 week later (Retest) to assess repeatability. Metabolic effect parameters with regard to energy metabolism and urine metabolomics were similar for both the Test and Retest period, underlining comparable exercise load. Following exercise, intestinal permeability (1 h plasma lactulose-to-rhamnose ratio) and the serum interleukin-6, interleukin-10, fibroblast growth
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.