Historically, graphene-based transistor fabrication has been time-consuming due to the high demand for carefully controlled Raman spectroscopy, physical vapor deposition, and lift-off processes. For the first time in a three-terminal graphene field-effect transistor embodiment, we introduce a rapid fabrication technique that implements non-toxic eutectic liquid-metal Galinstan interconnects and an electrolytic gate dielectric comprised of honey. The goal is to minimize cost and turnaround time between fabrication runs; thereby, allowing researchers to focus on the characterization of graphene phenomena that drives innovation rather than a lengthy device fabrication process that hinders it. We demonstrate characteristic Dirac peaks for a single-gate graphene field-effect transistor embodiment that exhibits hole and electron mobilities of 213 ± 15 and 166 ± 5 cm
2/V·s respectively. We discuss how our methods can be used for the rapid determination of graphene quality and can complement Raman Spectroscopy techniques. Lastly, we explore a PN junction embodiment which further validates that our fabrication techniques can rapidly adapt to alternative device architectures and greatly broaden the research applicability.
Advancements in flexible circuit interconnects are critical for widespread adoption of flexible electronics. Non-toxic liquid-metals offer a viable solution for flexible electrodes due to deformability and low bulk resistivity. However, fabrication processes utilizing liquid-metals suffer from high complexity, low throughput, and significant production cost. Our team utilized an inexpensive spray-on stencil technique to deposit liquid-metal Galinstan electrodes in top-gated graphene field-effect transistors (GFETs). The electrode stencils were patterned using an automated vinyl cutter and positioned directly onto chemical vapor deposition (CVD) graphene transferred to polyethylene terephthalate (PET) substrates. Our spray-on method exhibited a throughput of 28 transistors in under five minutes on the same graphene sample, with a 96% yield for all devices down to a channel length of 50 μm. The fabricated transistors possess hole and electron mobilities of 663.5 cm2/(V·s) and 689.9 cm2/(V·s), respectively, and support a simple and effective method of developing high-yield flexible electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.