Thrombin-induced endothelial monolayer hyperpermeability is thought to result from increased F-actin stress fiber-related contractile tension, a process regulated by the small GTP-binding protein Rho. We tested whether this process was dependent on the Rho-associated protein kinase, ROCK, using a specific ROCK inhibitor, Y-27632. The effects of Y-27632 on thrombin-induced myosin light chain phosphorylation (MLCP) and tyrosine phosphorylation of p125 focal adhesion kinase (p125(FAK)) and paxillin were measured by Western blotting. F-actin organization and content were analyzed by digital imaging, and endothelial monolayer permeability was measured in bovine pulmonary artery endothelial cell (EC) monolayers using a size-selective permeability assay. Y-27632 enhanced EC monolayer barrier function due to a decline in small-pore number that was associated with increased EC surface area, reduced F-actin content, and reorganization of F-actin to beta-catenin-containing cell-cell adherens junctions. Although Y-27632 prevented thrombin-induced MLCP, stress fiber formation, and the increased phosphotyrosine content of paxillin and p125(FAK), it attenuated but did not prevent the thrombin-induced formation of large paracellular holes. These data indicate that thrombin-induced stress fiber formation is ROCK dependent. In contrast, thrombin-induced paracellular hole formation occurs in a ROCK-independent manner, whereas thrombin-induced monolayer hyperpermeability appears to be partially ROCK dependent.
The modulation of endothelial barrier function is thought to be a function of contractile tension mediated by the cell cytoskeleton, which consists of actomyosin stress fibers (SF) linked to focal adhesions (FA). We tested this hypothesis by dissociating SF/FA with Clostridium botulinum exoenzyme C3 transferase (C3), an inhibitor of the small GTP-binding protein RhoA. Bovine pulmonary artery endothelial cell (EC) monolayers given C3, C3 + thrombin, thrombin, or no treatment were examined using a size-selective permeability assay and quantitative digital imaging measurements of SF/FA. C3 treatment disassembled SF/FA, stimulated diffuse myosin II immunostaining, and reduced the phosphotyrosine (PY) content of paxillin and 130- to 140-kDa proteins that included p125(FAK). C3-treated monolayers displayed a 60-85% decline in F-actin content and a 170-300% increase in EC surface area with enhanced endothelial barrier function. This activity correlated with reorganization of F-actin and PY protein(s) to beta-catenin-containing cell-cell junctions. Because C3 prevented the thrombin-induced formation of myosin ribbons, SF/FA, and the increased PY content of proteins, these characteristics were Rho dependent. Our data show that C3 inhibition of Rho proteins leads to cAMP-like characteristics of reduced SF/FA and enhanced endothelial barrier function.
The purpose of this study was to test the hypothesis that tyrosine phosphorylation signaling events and protein kinase C (PKC) activation mediate vascular endothelial growth factor-A(165) (VEGF)-induced endothelial cell (EC) proliferation and barrier dysfunction in bovine pulmonary artery EC monolayers. A size-selective permeability assay showed that VEGF stimulated a delayed, prolonged (6-45 h), concentration-dependent (50-200 ng/ml, approximately 1-4 nM) increase in the number of predominantly small-"pore" transport pathways (<60 A) across EC monolayers. The tyrosine kinase inhibitor herbimycin A (HA) and the selective PKC inhibitor bisindolylmaleimide (BIM) prevented this phenomenon. After 6-24 h, VEGF-treated monolayers displayed an HA- and BIM-sensitive reorganization of beta-catenin adherens junctions with fingerlike projections and the loss of beta-catenin at sites of small paracellular hole formation. HA and BIM prevented the VEGF-induced increase in EC growth. HA blocked the VEGF-induced rapid and prolonged (10 min-45 h) increases in the phosphotyrosine (PY) contents of VEGF receptor 2, phospholipase C-gamma1, paxillin, and beta-catenin as well as approximately 140- and 128- to 117-kDa proteins, whereas BIM inhibited only the tyrosine phosphorylation of beta-catenin. These data suggest that VEGF initiates increased EC growth and chronic, small-pore endothelial barrier dysfunction by PY signaling through beta-catenin that depends on PKC.
The observed differences between clinical and ultrasonic identification of spinal puncture level highlight the potential for serious complications associated with the performance of neuraxial blocks above the spinous process of L3 in the parturient. With the increase in popularity of techniques involving puncture of the dura mater for labour anaesthesia, we feel that awareness of this risk is important.
This study documents the discrete solute permeability mechanisms associated with physiologically high concentrations of human alpha-thrombin and bradykinin stimulation of bovine pulmonary artery endothelial cell (BPAEC) monolayers using fluorescein isothiocyanate-hydroxyethyl starch macromolecules. Agonist-induced alterations of intracellular free calcium ([Ca2+]i) using fura-2 acetoxymethyl ester were also measured. BPAEC monolayers showed restricted diffusion consistent with a small-pore (approximately 150 A) radius under baseline conditions. Thrombin produced a major increase in monolayer permeability that was greatest for solute molecular radii (ae) > 100 A. This effect was associated with the exposure of the large (approximately 2,000 A) pores of the filter support by 50- to 1,050-microns2 open areas between approximately 0.5% of the adjacent endothelial cells. This heterogeneous endothelial barrier of parallel large- and small-pore transport pathways permitted solute convection with free diffusion across a few large pores to dominate the restricted diffusion of most apparently unperturbed endothelial junctions. Bradykinin produced a small, transient elevation in monolayer permeability to ae < 35 A, consistent with an increase in the number of small pores or a decrease in path length of this transport pathway. The bradykinin- and thrombin-induced peak elevations in [Ca2+]i were inversely associated with the degree of increased monolayer solute permeability, and enzymatically inhibited thrombin produced none of these effects. These data show that bradykinin and human alpha-thrombin represent two distinct classes of endothelial cell agonists that initiate discrete solute permeability mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.