ABSTRACT. We describe a new tide model for the seas surrounding Antarctica, including the ocean cavities under the floating ice shelves. The model uses data assimilation to improve its fit to available data. Typical peak-to-peak tide ranges on ice shelves are 1^2 m but can exceed 3 m for the Filchner^Ronne and Larsen Ice Shelves in the Weddell Sea. Spring tidal ranges are about twice these values. Model performance is judged relative to the ¹5^10 cm accuracy that is needed to fully utilize ice-shelf height data that will be collected with the Geoscience Laser Altimeter System, scheduled to be launched on the Ice, Cloud and land Elevation Satellite in late 2002.The model does not yet achieve this level of accuracy except very near the few high-quality tidal records that have been assimilated into the model. Some improvement in predictive skill is expected from increased sophistication of model physics, but we also require better definition of ice-shelf grounding lines and more accurate water-column thickness data in shelf seas and under the ice shelves. Long-duration tide measurements (bottom pressure gauge or global positioning system) in critical datasparse areas, particularly near and on the Filchner^Ronne and Ross Ice Shelves and Pine Island Bay, are required to improve the performance of the data-assimilation model.
[1] The basal mass balance of the Amery Ice Shelf (AIS) in East Antarctica is investigated using a numerical ocean model. The main improvements of this model over previous studies are the inclusion of frazil formation and dynamics, tides and the use of the latest estimate of the sub-ice-shelf cavity geometry. The model produces a net basal melt rate of 45.6 Gt year À1 (0.74 m ice year À1 ) which is in good agreement with reviewed observations. The melting at the base of the ice shelf is primarily due to interaction with High Salinity Shelf Water created from the surface sea-ice formation in winter. The temperature difference between the coldest waters created in the open ocean and the in situ freezing point of ocean water in contact with the deepest part of the AIS drives a melt rate that can exceed 30 m of ice year
À1. The inclusion of frazil dynamics is shown to be important for both melting and marine ice accretion (refreezing). Frazil initially forms in the supercooled water layer adjacent to the base of the ice shelf. The net accretion of marine ice is 5.3 Gt year À1 , comprised of 3.7 Gt year À1 of frazil accretion and 1.6 Gt year À1 of direct basal refreezing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.