Future networks are expected to support lowlatency, context-aware and user-specific services in a highly flexible and efficient manner. One approach to support emerging use cases such as, e.g., virtual reality and in-network image processing is to introduce virtualized network functions (vNF)s at the edge of the network, placed in close proximity to the end users to reduce end-to-end latency, time-to-response, and unnecessary utilisation of the core network. While placement of vNFs has been studied before, it has so far mostly focused on reducing the utilisation of server resources (i.e., minimising the number of servers required in the network to run a specific set of vNFs), and not taking network conditions into consideration such as, e.g., end-to-end latency, the constantly changing network dynamics, and user mobility patterns. In this paper, we first formulate the Edge vNF placement problem to allocate vNFs to a distributed edge infrastructure, minimising end-to-end latency from all users to their associated vNFs. Furthermore, we present a way to dynamically reschedule the optimal placement of vNFs based on temporal network-wide latency fluctuations using optimal stopping theory. We evaluate our dynamic scheduler over a simulated nationwide backbone network using real-world ISP latency characteristics. We show that our proposed dynamic placement scheduler minimises vNF migrations compared to other schedulers (e.g., periodic and always-on scheduling of a new placement), and offers Quality of Service guarantees by not exceeding a maximum number of latency violations that can be tolerated by certain applications.
Abstract-In order to cope with the increasing network utilization driven by new mobile clients, and to satisfy demand for new network services and performance guarantees, telecommunication service providers (TSPs or telcos) are exploiting virtualization over their network by implementing network services in Virtual Machines (VMs), decoupled from legacy hardwareaccelerated appliances. This effort, known as Network Function Virtualization (NFV) reduces OPEX and provides new business opportunities.At the same time, next generation mobile, enterprise, and Internet of Things (IoT) networks are introducing the concept of computing capabilities being pushed at the network edge, in close proximity of the users. However, the heavy footprint of today's NFV platforms prevents them from operating at the network edge. In this article, we identify the opportunities of virtualization at the network edge and present Glasgow Network Functions (GNF), a container-based NFV platform that runs and orchestrates lightweight container vNFs, saving core network utilization and providing lower latency. Finally, we demonstrate three useful examples of the platform: IoT DDoS remediation, on-demand troubleshooting for telco networks, and supporting roaming of network functions.
Abstract-Software-Defined Networking (SDN) is an emerging paradigm to logically centralize the network control plane and automate the configuration of individual network elements. At the same time, in Cloud Data Centers (DCs), even though network and server resources converge over the same infrastructure and typically under a single administrative entity, disjoint control mechanisms are used for their respective management.In this paper, we propose a unified server-network control mechanism for converged ICT environments. We present a SDNbased orchestration framework for live Virtual Machine (VM) management where server hypervisors exploit temporal network information to migrate VMs and minimize the network-wide communication cost of the resulting traffic dynamics. A prototype implementation is presented and Mininet is used to evaluate the impact of diverse orchestration algorithms.
Abstract-In modern Cloud Data Centers (DC)s, correct implementation of network policies is crucial to provide secure, efficient and high performance services for tenants. It is reported that the inefficient management of network policies accounts for 78% of DC downtime, challenged by the dynamically changing network characteristics and by the effects of dynamic Virtual Machine (VM) consolidation. While there has been significant research in policy and VM management, they have so far been treated as disjoint research problems.In this paper, we explore the simultaneous, dynamic VM and policy consolidation, and formulate the Policy-VM Consolidation (PVC) problem, which is shown to be NP-Hard. We then propose Sync, an efficient and synergistic scheme to jointly consolidate network policies and virtual machines. Extensive evaluation results and a testbed implementation of our controller show that policy and VM migration under Sync significantly reduces flow endto-end delay by nearly 40%, and network-wide communication cost by 50% within few seconds, while adhering strictly to the requirements of network policies.
Today's enterprise networks almost ubiquitously deploy middlebox services to improve in-network security and performance. Although virtualization of middleboxes attracts a significant attention, studies show that such implementations are still proprietary and deployed in a static manner at the boundaries of organisations, hindering open innovation.In this paper, we present an open framework to create, deploy and manage virtual network functions (NF)s in OpenFlowenabled networks. We exploit container-based NFs to achieve low performance overhead, fast deployment and high reusability missing from today's NFV deployments. Through an SDN northbound API, NFs can be instantiated, traffic can be steered through the desired policy chain and applications can raise notifications. We demonstrate the systems operation through the development of exemplar NFs from common Operating System utility binaries, and we show that container-based NFV improves function instantiation time by up to 68% over existing hypervisorbased alternatives, and scales to one hundred co-located NFs while incurring sub-millisecond latency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.