Highly active and selective: A supported Ru5PtSn nanoparticle cluster (the picture shows an axial projection of a tomogram), prepared from the carbonyl cluster [PtRu5(CO)15(μ‐SnPh2)(μ6‐C)], is an excellent catalyst in the single‐step hydrogenation of dimethyl terephthalate to cyclohexanedimethanol under mild conditions (100 °C, 20 bar H2).
Cationic methyl Pd() complexes are described in which the new heterofunctional phosphine ligands Ph 2 PNHC(O)Me 1 or Ph 2 PN(Me)C(O)Me 3 behave as rigid and/or hemilabile P,O chelates. The chelating ability of 3 is higher than that of 1 and both are compared to that of other P,O ligands, such as the keto-and amido-phosphines Ph 2 PCH 2 C(O)Ph and Ph 2 PCH 2 C(O)NPh 2 , respectively. The crystal structure of 1 reveals the presence in the solid-state of an intermolecular hydrogen-bonded network N-H ؒ ؒ ؒ O and that of12b establishes the presence of both a chelating and a monodentate ligand 1 in the same complex. Carbonylation of the cationic methyl complexes 8a, 17, 18a and 20a afforded the corresponding acetyl complexes in which this ligand occupies a position cis to phosphorus, irrespective of that of the alkyl ligand in the precursor complex.
The six-membered heavy atom heterocycles [Re(2)(CO)(8)(μ-SbPh(2))(μ-H)](2), 5, and Pd[Re(2)(CO)(8)(μ-SbPh(2))(μ-H)](2), 7, have been prepared by the palladium-catalyzed ring-opening cyclo-dimerization of the three-membered heterocycle Re(2)(CO)(8)(μ-SbPh(2))(μ-H), 3. The palladium atom that lies in the center of the heterocycle 7 was removed to yield 5. The palladium removal was found to be partially reversible leading to an unusual example of host-guest behavior. A related dipalladium complex Pd(2)Re(4)(CO)(16)(μ(4)-SbPh)(μ(3)-SbPh(2))(μ-Ph)(μ-H)(2), 6, was also formed in these reactions of palladium with 3.
The catalytic performance of cluster-derived PtFe/SiO(2) bimetallic catalysts for the oxidation of CO has been examined in the absence and presence of H(2) (PROX) and compared to that of Pt/SiO(2). PtFe(2)/SiO(2) and Pt(5)Fe(2)/SiO(2) samples were prepared from PtFe(2)(COD)(CO)(8) and Pt(5)Fe(2)(COD)(2)(CO)(12) organometallic cluster precursors, respectively. FTIR data indicate that both clusters can be deposited intact on the SiO(2) support. The clusters remained weakly bonded to the SiO(2) surface and could be extracted with CH(2)Cl(2) without any significant changes in their structure. Subsequent heating in H(2) led to complete decarbonylation of the supported clusters at approximately 350 degrees C and the formation of Pt-Fe nanoparticles with sizes in the 1-2 nm range, as indicated by HRTEM imaging. A few larger nanoparticles enriched in Pt were also observed, indicating that a small fraction of the deposited clusters were segregated to the individual components following the hydrogen treatment. A higher degree of metal dispersion and more homogeneous mixing of the two metals were observed during HRTEM/XEDS analysis with the cluster-derived samples, as compared to a PtFe/SiO(2) catalyst prepared through a conventional impregnation route. Furthermore, the cluster-derived PtFe(2)/SiO(2) and Pt(5)Fe(2)/SiO(2) samples were more active than Pt/SiO(2) and the conventionally prepared PtFe/SiO(2) sample for the oxidation of CO in air. However, substantial deactivation was also observed, indicating that the properties of the Pt-Fe bimetallic sites in the cluster-derived samples were altered by exposure to the reactants. The Pt(5)Fe(2)/SiO(2) sample was also more active than Pt/SiO(2) for PROX with a selectivity of approximately 92% at 50 degrees C. In this case, the deactivation with time on stream was substantially slower, indicating that the highly reducing environment under the PROX conditions helps maintain the properties of the active Pt-Fe bimetallic sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.