Midline frontolimbic networks are engaged in monitoring simple actions. They may also provide evaluative control for more complex decisions. Subjects read a trait-descriptive word and responded either "yes" or "no" within 1,500 ms whether it was self-descriptive. By 300 ms, an electrophysiological discrimination between good and bad words was seen over centromedial regions of the frontal lobe for both friend and self-decisions. By 350 ms, an interaction effect between evaluation and endorsement appeared, and by 500 ms, activity specific to self-evaluation was seen in both anterior and posterior midline sites. An evaluative decision thus begins by recruiting motivational and semantic influences within limbic networks, and these influences appear to shape the development of the decision within multiple neocortical regions.
Electrophysiologic and functional imaging studies have shown that the visual cortex produces differential responses to the presence or absence of structure within visual textures. To further define and characterize regions involved in the analysis of form, functional magnetic resonance imaging (fMRI) was used to detect changes in activation during the viewing of four levels of isodipole textures. The texture levels systematically differed in the density of visual features such as extended contours and blocks of solid color present within the images. A linear relationship between activation level and density of structure was observed in the striate cortex of human subjects. This finding suggests that a special subpopulation of striate cortical neurons participates in the ability to extract and process structural continuity within visual stimuli.
In positron emission tomography studies using bolus injection of [15O]water, activation responses reflect underlying CBF changes during a short time (15 to 20 seconds) after arrival of the bolus in the brain. This CBF sensitivity window may be too short for complex activation paradigms, however, particularly those of longer duration. To perform such paradigms, we used a slow infusion method of tracer administration to lengthen the CBF sensitivity window. The present study was designed to determine if this slow infusion technique yields similar results to a bolus injection with a short activation task involving memory for faces. When analyzed using statistical parametric mapping, scanning durations of either 90 or 120 seconds and a 90-second slow infusion schedule produced very similar results to a standard 60-second scan collected after bolus injection, indicating that statistically similar brain activation maps can be produced with the two infusion techniques. This slow infusion approach allows for increased flexibility in designing future studies in which a short CBF sensitivity window is a limiting factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.