Several polynomial time algorithms finding "good," but not necessarily optimal, tours for the traveling salesman problem are considered. We measure the closeness of a tour by the ratio of the obtained tour length to the minimal tour length. For the nearest neighbor method, we show the ratio is bounded above by a logarithmic function of the number of nodes. We also provide a logarithmic lower bound on the worst case. A class of approximation methods we call insertion methods are studied, and these are also shown to have a logarithmic upper bound. For two specific insertion methods, which we call nearest insertion and cheapest insertion, the ratio is shown to have a constant upper bound of 2, and examples are provided that come arbitrarily close to this upper bound. It is also shown that for any n ≥ 8, there are traveling salesman problems with n nodes having tours which cannot be improved by making n/4 edge changes, but for which the ratio is 2(1 − 1/n).
I. Introduction. In his celebrated paper [1], A. M. Turing investigated the computability of sequences (functions) by mechanical procedures and showed that the setofsequencescanbe partitioned into computable and noncomputable sequences. One finds, however, that some computable sequences are very easy to compute whereas other computable sequences seem to have an inherent complexity that makes them difficult to compute. In this paper, we investigate a scheme of classifying sequences according to how hard they are to compute. This scheme puts a rich structure on the computable sequences and a variety of theorems are established. Furthermore, this scheme can be generalized to classify numbers, functions, or recognition problems according to their computational complexity.The computational complexity of a sequence is to be measured by how fast a multitape Turing machine can print out the terms of the sequence. This particular abstract model of a computing device is chosen because much of the work in this area is stimulated by the rapidly growing importance of computation through the use of digital computers, and all digital computers in a slightly idealized form belong to the class of multitape Turing machines. More specifically, if Tin) is a computable, monotone increasing function of positive integers into positive integers and if a is a (binary) sequence, then we say that a is in complexity class ST or that a is T-computable if and only if there is a multitape Turing machine 3~ such that 3~ computes the nth term of a. within Tin) operations. Each set ST is recursively enumerable and so no class ST contains all computable sequences. On the other hand, every computable a is contained in some complexity class ST. Thus a hierarchy of complexity classes is assured. Furthermore, the classes are independent of time scale or of the speed of the components from which the machines could be built, as there is a "speed-up" theorem which states that ST = SkT for positive numbers k.As corollaries to the speed-up theorem, there are several limit conditions which establish containment between two complexity classes. This is contrasted later with the theorem which gives a limit condition for noncontainment. One form of this result states that if (with minor restrictions)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.