Five different alloy hardfacings on 16MnCr5 grade low-carbon ferritic–pearlitic steel were investigated in terms of their abrasive wear resistance in laboratory testing conditions. The selected hardfacing materials, namely “E520 RB”, “RD 571”, “LNM 420FM”, “E DUR 600”, and “Weartrode 62”, were individually deposited onto plain ground-finish surfaces of 10 mm thick steel plate samples. The studied hardfacings were fabricated using several different welding methods and process parameters proposed by their industrial manufacturers. In the present comparative study, the results obtained from laboratory abrasive wear tests of the investigated hardfacings were analyzed and discussed in relation to their microstructure, hardness, and wear mechanism characteristics. Regardless of great variety in microstructure and chemical composition of individual hardfacing materials, the results clearly indicated the governing factor for the wear resistance improvement to be the overall carbon content of the used hardfacing material. Thus it has been shown that the “E520 RB” hardfacing exhibited the highest abrasive wear resistance thanks to its appropriate hardness and beneficial “ledeburite-type” eutectic microstructure.
Aim of this paper was to investigate the effects of grit size and wood species on mass concentration and size distribution of wood dust produced by hand-held belt sander. Experimental study was designed as 2x2 full factorial experiments. Experimental parameters and their levels were abrasive grain size (P80, P120) and wood species (European beech (Fagus sylvatica L.), Norway spruce (Picea abies)).The mass concentration of emitted wood dust was measured using aerosol monitor (TSI Inc., DustTrak DRX 8533). Sampler head was sited in place representing breathing zone of operator of sander. The results was analysed employing the analysis of variance (ANOVA) with 5% of significance level. Real-time measurements demonstrated that spruce wood generated higher dust concentrations than beech wood due to difference in abrasion durability. Compared to sanding belt with P80 grit size, approximately 16%-32% higher dust concentration was generated when the sanding belt with P120 grit size was used.
The article dealt with the assessment of the quality of hydraulic oil and determination of the mode of wear of the friction surfaces of Baljer & Zembrod manipulating lines through the information traces in the oils by applying tribotechnical diagnostics. We presented the assessment of the level of degradation of the oils. In addition, we presented the mode of wear of the friction surfaces washed in oil through evaluation of the qualitative and quantitative characteristics of the particles found in the oil. In detail, we focused on the application of suitable multivariate statistical methods on the data matrix. The article also presents predictive models that can sort oils into groups based on the assessment of quality of the oil and the state of the friction couples. The models can be used in research and in solving practical tasks in tribotechnical diagnostics of hydraulic fluids in woodworking equipment. Our results showed that the manipulation lines were greatly thermically stressed due to inadequate oil and machine maintenance. By correlative integration of all methods used, we could determine the real mode of the wear of the tribologic nodes of the machine. The experiment enabled the early detection of an undesirable process in the tribological node and implementation of corrective measures before the machine would break down.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.