Tissues in the body are hierarchically structured composite materials with tissue-specific chemical and topographical properties. Here we report the preparation of tissue scaffolds with macroscopic pores generated via the dissolution of a sacrificial supramolecular polymer-based crystal template (urea) from a biodegradable polymer-based scaffold (polycaprolactone, PCL). Furthermore, we report a method of aligning the supramolecular polymer-based crystals within the PCL, and that the dissolution of the sacrificial urea yields scaffolds with macroscopic pores that are aligned over long, clinically-relevant distances (i.e., centimeter scale). The pores act as topographical cues to which rat Schwann cells respond by aligning with the long axis of the pores. Generation of an interpenetrating network of polypyrrole (PPy) and poly(styrene sulfonate) (PSS) in the scaffolds yields electroactive tissue scaffolds that allow the electrical stimulation of Schwann cells cultured on the scaffolds which increases the production of nerve growth factor (NGF).
Heteroanionic materials leverage the advantages offered by two different anions coordinating the same or different cations to realize unanticipated or enhanced electronic, optical, and magnetic responses. Beyond chemical variations offered by the anions, the ability to control the anion order present within a single transition metal polyhedron via anion-sublattice engineering offers a potentially transformative strategy in tuning material properties. The set of design rules for realizing and controlling anion order, however, are incomplete, which is due in part to the limited anion-ordered diversity in known structures. This aspect makes formulating such principles from experiment alone challenging. Here, we demonstrate how computational methods at multiple levels of theory are effective at investigating the anion site order dependencies in heteroanionic materials, HAMs, and enable the construction of crystal-chemistry principles. Our approach relies on a database of anion ordered structure variants in which we manipulate the lattice degrees of freedom through the incorporation of structural distortions. Structure–property relationships and anion-order descriptors are data mined from group theoretical techniques and density functional theory calculations. Using our combined computational scheme, we uncover a hybrid improper mechanism to stabilize polar phases, propose the chemical link between local and long ranger anion order, and detail the sequence of order–disorder/displacive transitions observed experimentally in the oxyfluoride Na3MoO3F3. Our method is scalable and transferable to many heteroanionic chemistries and crystal families, facilitating the construction of heteroanionic materials design principles.
Complex crystal structures with subtle atomic-scale details are now routinely solved using complementary tools such as X-ray and/or neutron scattering combined with electron diffraction and imaging. Identifying unambiguous atomic models for oxyfluorides, needed for materials design and structure–property control, is often still a considerable challenge despite their advantageous optical responses and applications in energy storage systems. In this work, NMR crystallography and single-crystal X-ray diffraction are combined for the complete structure solution of three new compounds featuring a rare triangular early transition metal oxyfluoride cluster, [Mo3O4F9]5–. After framework identification by single-crystal X-ray diffraction, 1D and 2D solid-state 19F NMR spectroscopy supported by ab initio calculations are used to solve the structures of K5[Mo3O4F9]·3H2O (1), K5[Mo3O4F9]·2H2O (2), and K16[Mo3O4F9]2[TiF6]3·2H2O (3) and to assign the nine distinct fluorine sites in the oxyfluoride clusters. Furthermore, 19F NMR identifies selective fluorine dynamics in K16[Mo3O4F9]2[TiF6]3·2H2O. These dual scattering and spectroscopy methods are used to demonstrate the generality and sensitivity of 19F shielding to small changes in bond length, on the order of 0.01 Å or less, even in the presence of hydrogen bonding, metal–metal bonding, and electrostatic interactions. Starting from the structure models, the nature of chemical bonding in the molybdates is explained by molecular orbital theory and electronic structure calculations. The average Mo–Mo distance of 2.505 Å and diamagnetism in 1, 2, and 3 are attributed to a metal–metal bond order of unity along with a 1a21e4 electronic ground state configuration for the [Mo3O4F9]5− cluster, leading to a rare trimeric spin singlet involving d2 Mo4+ ions. The approach to structure solution and bonding analysis is a powerful strategy for understanding the structures and chemical properties of complex fluorides and oxyfluorides.
2D metal–organic frameworks provide insight into kagomé spin physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.